Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Informatik
Document Image Processing
Page - 139 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 139 - in Document Image Processing

Image of the Page - 139 -

Image of the Page - 139 - in Document Image Processing

Text of the Page - 139 -

J. Imaging 2018,4, 15 0% 10% 20% 30% 40% 50% 60% 70% 80% 1 2 3 4 5 6 WER=43.2% CER=20.0% OOV WAR=9.3% n-gram size Word Error Rate Character Error Rate OOV Word Accuracy Rate Figure8.Resultsobtainedbydecodingat theHMMsub-word levelbyusingn-gramlanguagemodels withsizen={1,. . . ,6}. 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 WER=39.8% CER=17.6% OOV WAR=18.3% n-gram size Word Error Rate Character Error Rate OOV Word Accuracy Rate Figure9.Resultsobtainedbydecodingat theHMMcharacter levelbyusingn-gramlanguagemodels withsizen={1,. . . ,15}. Table 2. Overall best results on the Rodrigo test set in terms ofWER, CER andOOVWAR for theHMMsystem. Measure Word Sub-Word Character3-gram 4-gram 10-gram WER 43.9%±0.5 43.2%±0.5 39.8%±0.5 CER 21.2%±0.3 20.0%±0.3 17.6%±0.3 OOVWAR 2.3%±0.3 9.3%±0.7 18.3%±0.9 4.2. Studyof theRelationbetween theStructureof theOOVWordsandtheTrainingWords Thecharacter-basedapproachisabletorecognizesomeOOVwordsgiventhatthecharacter-based LMlearns thestructureof thewordscontainedinthe trainingset. Inorder toverify thishypothesis, wemeasuredtheperplexitypresentedbythebestcharacter-basedLM(10-gram)fordecodingeachone of the4918OOVwordsas theircorrespondingcharactersequences. Figure10presents theobtained perplexityperOOVwordseparated into twodistributions, recognizedandunrecognizedOOVwords. Table3summarizes themainfeaturesof thesedistributions.Asexpected, therecognizedOOVwords present lowerperplexity thantheunrecognizedOOVwords. Theoverlapofbothdistributionsmakes us thinkthat there is still roomfor improvementgiventhatmoreOOVwordscouldberecognized. 139
back to the  book Document Image Processing"
Document Image Processing
Title
Document Image Processing
Authors
Ergina Kavallieratou
Laurence Likforman-Sulem
Editor
MDPI
Location
Basel
Date
2018
Language
German
License
CC BY-NC-ND 4.0
ISBN
978-3-03897-106-1
Size
17.0 x 24.4 cm
Pages
216
Keywords
document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
Category
Informatik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Document Image Processing