Page - 157 - in Document Image Processing
Image of the Page - 157 -
Text of the Page - 157 -
J. Imaging 2018,4, 39
Essentially,both theapproachesapplya functionontheconfidencescore inputs,where therulebased
functionsaresimpleroperations likesumrule,maxrule, etc. andclassifiers likek-NNandMLPapply
morecomplicatedfunctions.
3.1. RuleBasedCombinationTechniques
Rules are applied on the abstract level, rank level andmeasurement level outputs from the
classifiers toobtainafinal setofconfidencescores thatcantake intoaccount the insightsprovidedby
thepreviousstageofclassification. Elementarycombinationapproaches likemajorityvoting,Borda
count, sumrule,product ruleandthemaxrulecomeunder thisapproachofclassifiercombination.DS
theoryofevidence isarelativelycomplex technique that isadoptedfor thispurpose,utilising therule
ofcombinationfor informationsourceswith thesameframeofdiscernment.
3.1.1.MajorityVoting
Astraightforwardvotingtechnique ismajorityvotingoperatingat theabstract level. It considers
only thedecisionclassprovidedbyeachclassifierandchooses themost frequentclass labelamong
this set. Inorder toreduce thenumberof ties, thenumberofclassifiersusedforvoting isusuallyodd.
3.1.2. BordaCount
Bordacount isavoting techniqueonrank level [37]. Foreveryclass,Bordacountadds theranks
in then-best listsofeachclassifierso that foreveryoutputclass theranksacross theclassifieroutputs
getaccumulated. Theclasswith themost likelyclass label, contributes thehighest ranknumberand
the lastentryhas the lowest ranknumber. Thefinaloutput label foragiventestpatternXis theclass
withhighestoverall ranksum. Inmathematical terms, this readsas follows: LetNbethenumberof
classifiersand rji therankofclass i in then-best listof the j-thclassifier. Theoverall rank riofclass i is
thusgivenby
ri= N
∑
j=1 rji (1)
ThetestpatternXisassignedtheclass iwiththemaximumoverall rankcount ri. Bordacount
isverysimple tocomputeandrequiresno training. There isalsoa trainablevariant thatassociates
weights to theranksof individualclassifiers. Theoverall rankcount forclass i is thencomputedas
givenbelow
ri= N
∑
j=1 wjr j
i (2)
Theweights can be the performance of each individual classifiermeasured on a training or
validationset.
3.1.3. ElementaryCombinationApproachesonMeasurementLevel
Elementarycombinationschemesonmeasurement levelapplysimplerules forcombination, such
assumrule,product ruleandmaxrule. Sumrulesimplyaddsthescoreprovidedbyeachclassifier
fromasetofclassifier foreveryclassandassigns theclass labelwith themaximumscore to thegiven
inputpattern. Similarly,product rulemultiplies thescore foreveryclassandthenoutputs theclass
with themaximumscore. Themaxrulepredicts theoutputbytheselecting theclasscorrespondingto
themaximumconfidencevalueamongall theparticipatingclassifiers’outputscores.
Interesting theoretical results, includingerrorestimations,havebeenderived for thesesimple
combinationschemes.Kittleretal. showedthat sumrule is less sensitive tonoise thanother rules [38].
Despite their simplicity, simple combination schemeshave resulted inhigh recognition rates and
showncomparableresults to themorecomplexprocedures.
157
back to the
book Document Image Processing"
Document Image Processing
- Title
- Document Image Processing
- Authors
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Editor
- MDPI
- Location
- Basel
- Date
- 2018
- Language
- German
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Size
- 17.0 x 24.4 cm
- Pages
- 216
- Keywords
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Category
- Informatik