Page - 158 - in Document Image Processing
Image of the Page - 158 -
Text of the Page - 158 -
J. Imaging 2018,4, 39
3.1.4.Dempster-ShaferTheoryofEvidence
TheDSframework[39] isbasedontheviewwherebypropositionsarerepresentedassubsetsof
agivensetW, referredtoasa frameofdiscernment. Evidencecanbeassociatedtoeachproposition
(subset) toexpress theuncertainty (belief) thathasbeenobservedordiscerned. Evidence isusually
computed based on a density function m called Basic Probability Assignment (BPA) and m(p)
represents thebeliefexactlycommittedto thepropositionp.
DS theoryhasanoperationcalledDempster’s rule of combination that aggregates two (ormore)
bodiesofevidencedefinedwithin thesameframeofdiscernment intoonebodyofevidence. Letm1
andm2 be twoBPAsdefinedinW. Thenewbodyofevidence isdefinedbytheBPAm1,2 as:
m1,2(A)= {
0 if A=∅
1
1−K ∑
B∩C=A m1(B)m2(C) if A =∅ (3)
where,K=∑B∩C=∅m1(B)m2(C)andA is the intersectionofsubsetsBandC.
Inotherwords, theDempster’s combinationrulecomputesameasureofagreementbetweentwo
bodiesofevidenceconcerningvariouspropositionsdeterminedfromacommonframeofdiscernment.
Therule focusesonlyonthosepropositions thatbothbodiesofevidencesupport.
The denominator is a normalization factor that ensures that m is a BPA, called the conflict.
TheYagar’smodificationoftheDStheory[40]hasbeenimplementedinthepaperwiththenormalizing
factoras1. This reducessomeof the issuesregardingtheconflict factor.
Earlier, DS theory based combination has been applied on different fields like handwritten
digit recognition [41], skin detection [42], 3D palm print recognition [43] among other pattern
recognitiondomains.
3.2. SecondaryClassifierBasedCombinationTechniques
Theconfidencevaluesprovidedbytheclassifiersactas the featureset for thesecondaryclassifier
whichactsonthesecondstageof the framework.With the trainingfromtheclassifierscores, it learns
topredict theoutcomeforasetofnewconfidencescoresfromthesamesetofclassifiers. Theadvantage
ofusingsuchagenericcombinator is that itcanlearnthecombinationalgorithmandcanautomatically
account for the strengths and score ranges of the individual classifiers. For example,Dar-Shyang
Lee[29]usedaneuralnetworktooperateontheoutputsof the individualclassifiersandtoproduce
thecombinedmatchingscore.Apart fromtheneuralnetwork,otherclassifiers likek-NN,SVMand
RandomForesthavebeenfittedandtested in thispaper.
4.ResultsandInterpretation
4.1. PreparationofDatabase
Atpresent,nostandardbenchmarkdatabaseofhandwritten Indic scripts is freelyavailable in the
publicdomain.Hence,wehavecreatedourowndatabaseofhandwrittendocuments in the laboratory.
Thedocumentpages for thedatabasewerecollectedfromdifferentsourcesonrequest. Participants
of thisdata collectiondrivewereasked towrite few linesonA-4 sizepages. Noother restrictions
were imposedregardingthecontentof the textualmaterials. Thedocumentswerewritten in12official
scriptsof India. Thedocumentpagesaredigitizedat300dpiresolutionandstoredasgreytone images.
Thescanned imagesmaycontainnoisypixelswhichare removedbyapplyingGaussianfilter [33].
The textwordsareautomaticallyextractedfromthehandwrittendocumentsbyusingapage-to-word
segmentationalgorithmdescribedin[44].Asamplesnapshotofwordimageswritten in12different
scripts isshowninFigure7. Finally,atotalof7200handwrittenwordimagesareprepared,withexactly
600 textwordsperscript.
158
back to the
book Document Image Processing"
Document Image Processing
- Title
- Document Image Processing
- Authors
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Editor
- MDPI
- Location
- Basel
- Date
- 2018
- Language
- German
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Size
- 17.0 x 24.4 cm
- Pages
- 216
- Keywords
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Category
- Informatik