Page - 162 - in Document Image Processing
Image of the Page - 162 -
Text of the Page - 162 -
J. Imaging 2018,4, 39
scripts likeManipuri,GujaratiandUrdu, thusprovingtobe themodel tobeusedwhere thesescripts
arewidelyused.
Inorder tounderstandwhytheresults fromtheElliptical featuresetcombinesowellwith the
twoother featuresets, correlationanalysis isperformedontheconfidencescoreoutputs. Spearman
rankcorrelation isdoneontherank level informationprovidedbytheclassifiers toarriveatmean
values for themeasureof thecorrelation.HOGandMLGshowanindexof0.619which isalmost the
doubleof thescoresobtainedbycomparingtheElliptical featureswith these two.Withvaluesof0.32
and0.27, the lowcorrelation index isan indicationofbetterpossibilities for thecombinationprocesses.
Thus, complementary information isprovidedbytheoutputofElliptical featuresetwhichhelps in the
improvement theoverall combinedaccuracy.
Secondaryclassifiersareapplied to learn thepatterns fromtheprimaryclassifieroutputsand
developawaytocombinethem.Theconfidencescoresfromthethreesourcesareconcatenatedtoform
alarger trainingsetwith its correct label. This set is thenewfeaturesetwhichundergoesclassification
usingwell-knownalgorithms.Classifiers likek-NN,LogisticRegression,MLPandRandomForestare
appliedtoreportfinal resultswhichare tabulated inTables14–17respectively. Theresultsarereported
after3-foldcrossvalidationandtuningof theparameters involved. Thisprocess iscomputationally
costlyandtakesaprocessingstepalongwithmuchhighercomplexitybut is compensatedbythehigh
accuracyresults thatareobtained. 3-NNprovidesanaccuracyof98.30%,RandomForest classified
98.33%of the7200samplescorrectlyandLogisticRegressionattained98.48%accuracy.UsingMLP
againas thesecondaryclassifier,98.36%accuracy isobtained.Devanagari is themostconfusedscript in
all thecasesbutstillhasaccuracyover95%.Theotherscriptsarepredictedtoalmostcertainty.
Table4.ClassificationresultsaftercombinationusingMajorityvotingprocedure.
Class Class A B C D E F G H I J K L
A 534 2 3 10 3 2 16 7 13 0 5 5
B 1 590 0 3 0 0 0 0 0 0 0 6
C 0 0 597 0 0 2 0 0 1 0 0 0
D 2 3 0 590 0 0 0 0 0 0 2 3
E 0 1 0 0 591 2 0 0 0 1 0 5
F 12 0 5 0 13 561 1 7 1 0 0 0
G 2 0 6 4 5 1 554 14 7 3 4 0
H 4 0 4 3 1 6 0 567 7 2 5 1
I 9 1 1 2 0 1 7 2 572 0 5 0
J 0 0 1 0 2 0 0 3 0 594 0 0
K 4 0 2 5 4 1 10 4 1 0 567 2
L 0 2 10 3 6 2 1 1 1 5 3 566
Table5.ClassificationresultsaftercombinationusingBordacountprocedurewithoutweight.
Class Class A B C D E F G H I J K L
A 567 0 5 7 0 0 5 4 7 0 3 2
B 16 580 0 4 0 0 0 0 0 0 0 0
C 1 0 586 0 0 5 0 4 3 0 0 1
D 25 1 0 572 0 0 0 0 0 0 1 1
E 6 0 0 0 466 108 0 11 1 0 0 8
F 16 0 2 0 7 571 0 1 1 1 0 1
G 25 0 4 2 0 2 548 3 1 0 15 0
H 30 0 5 0 0 21 0 533 6 0 1 4
I 39 0 2 1 0 2 6 6 540 0 4 0
J 0 0 2 0 2 0 0 7 0 589 0 0
K 5 0 0 3 0 0 12 0 1 0 579 0
L 4 0 10 2 2 4 0 1 3 3 3 568
162
back to the
book Document Image Processing"
Document Image Processing
- Title
- Document Image Processing
- Authors
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Editor
- MDPI
- Location
- Basel
- Date
- 2018
- Language
- German
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Size
- 17.0 x 24.4 cm
- Pages
- 216
- Keywords
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Category
- Informatik