Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Technik
Emerging Technologies for Electric and Hybrid Vehicles
Page - 78 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 78 - in Emerging Technologies for Electric and Hybrid Vehicles

Image of the Page - 78 -

Image of the Page - 78 - in Emerging Technologies for Electric and Hybrid Vehicles

Text of the Page - 78 -

Energies 2017,10, 1217 72. Lulhe,A.M.; Date, T.N.A technology reviewpaper for drives used in electrical vehicle (EV)&hybrid electricalvehicles (HEV). InProceedingsof the2015 InternationalConferenceonControl, Instrumentation, CommunicationandComputationalTechnologies (ICCICCT),Kumaracoil, India,18–19December2015. 73. Magnussen,F.Ondesignandanalysisof synchronouspermanentmagnet forfield—Weakeningoperation. Ph.D.Thesis,KTHRoyal InstituteofTechnology,Sweden,2004. 74. ModelXSpecifications|Tesla.Availableonline: https://www.tesla.com/support/model-x-specifications (accessedon8May2017). 75. Yamada,K.;Watanabe,K.;Kodama,T.;Matsuda, I.;Kobayashi,T.Anefficiencymaximizing inductionmotor drivesystemfor transmissionlesselectricvehicle. InProceedingsof the13thInternationalElectricVehicle Symposium,Osaka, Japan,13–16Octobor1996;VolumeII,pp.529–536. 76. Boglietti, A.; Ferraris, P.; Lazzari,M.; Profumo, F.Anewdesign criteria for spindles inductionmotors controlledbyfieldorientedtechnique.Electr.Mach. PowerSyst. 1993,21, 171–182. [CrossRef] 77. Abbasian,M.;Moallem,M.;Fahimi,B.Double-statorswitchedreluctancemachines (DSSRM):Fundamentals andmagnetic forceanalysis. IEEETrans. EnergyConvers. 2010,25, 589–597. [CrossRef] 78. Cameron, D.E.; Lang, J.H.; Umans, S.D. The origin and reduction of acoustic noise in doubly salient variable-reluctancemotors. IEEETrans. Ind.Appl. 1992,28, 1250–1255. [CrossRef] 79. Chan,C.C.; Jiang,Q.;Zhan,Y.J.;Chau,K.T.Ahigh-performanceswitchedreluctancedrive forP-starEV project. InProceedingsof the13th InternationalElectricVehicleSymposium,Osaka, Japan,13–16Octobor 1996;VolumeII,pp.78–83. 80. Zhan,Y.J.;Chan,C.C.;Chau,K.T.Anovelsliding-modeobserver for indirectpositionsensingofswitched reluctancemotordrives. IEEETrans. Ind. Electron. 1999,46, 390–397. [CrossRef] 81. Shareef,H.; Islam,M.M.;Mohamed,A.Areviewof thestage-of-the-art chargingtechnologies,placement methodologies,andimpactsofelectricvehicles.Renew. Sustain. EnergyRev. 2016,64, 403–420. [CrossRef] 82. Yu, X.E.; Xue, Y.; Sirouspour, S.; Emadi, A. Microgrid and transportation electrification: A review. In Proceedings of the 2012 IEEETransportation ElectrificationConference andExpo (ITEC),Dearborn, MI,USA,18–20 June2012. 83. Consumer and Clinical Radiation Protection Bureau; Environmental and Radiation Health Sciences Directorate;HealthyEnvironmentsandConsumerSafetyBranch;HealthCanada. Limitsofhumanexposure to radiofrequency electromagnetic energy in the frequency range from3kHz to 300GHz. Health Can. Saf.Code2009,6, 10–11. 84. IEEEStandard forSafetyLevelswithRespect toHumanExposure toRadioFrequencyElectromagneticFields, 3kHz to300GHz; IEEEStdC95.1; IEEE:NewYork,NY,USA,1999. 85. Ahlbom, A.; Bergqvist, U.; Bernhardt, J.H.; Cesarini, J.P.; Court, L.A.; Grandolfo, M.; Hietanen, M.; McKinlay,A.F.;Repacholi,M.H.; Sliney,D.H.Guidelines: For limitingexposure to time-varyingelectric, magneticandelectromagneticfields (upto300GHz).HealthPhys. 1998,74, 494–521. 86. AustralianRadiationProtection andNuclear SafetyAgency (ARPANSA).Radiation Protection Standard: MaximumExposureLevels toRadiofrequencyFields—3kHzto300GHz;RadiationProtectionSeriesPublication No. 3;ARPANSA:Melbourne,Australia, 2002. 87. Musavi,F.;Eberle,W.Overviewofwirelesspower transfer technologies forelectricvehiclebatterycharging. IETPowerElectron. 2014,7, 60–66. [CrossRef] 88. Chademo-CeritifedChragerList.Availableonline:www.chademo.com(accessedon6July2015). 89. Supercharger.Availableonline:www.chademo.com(accessedon7July2015). 90. InternationalElectrotechnicalCommission.Standard IEC62196—Plugs,Socket-Outlets,VehicleCouplersand Vehicle Inlets—ConductiveChargingofElectricVehicles;TheInternationalElectrotechnicalCommission(IEC): Geneva,Switzerland,2003. 91. Onar,O.C.;Kobayashi, J.;Khaligh,A.AFullyDirectionalUniversalPowerElectronic Interface forEV,HEV, andPHEVApplications. IEEETrans. PowerElectron. 2013,28, 5489–5498. [CrossRef] 92. Bose,B.K.Powerelectronics—Atechnologyreview.Proc. IEEE1992,80, 1303–1334. [CrossRef] 93. Yaramasu,V.;Wu,B.; Sen, P.C.; Kouro, S.; Narimani,M.High-powerwindenergy conversion systems: State-of-the-artandemergingtechnologies.Proc. IEEE2015,103, 740–788. [CrossRef] 94. Kok,D.;Morris,A.;Knowles,M.NovelEVdrive train topology—Areviewof thecurrent topologiesand proposal foramodel for improveddrivability. InProceedingsof the201315thEuropeanConferenceon PowerElectronicsandApplications (EPE),Lille,France,2–6September2013. 78
back to the  book Emerging Technologies for Electric and Hybrid Vehicles"
Emerging Technologies for Electric and Hybrid Vehicles
Title
Emerging Technologies for Electric and Hybrid Vehicles
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03897-191-7
Size
17.0 x 24.4 cm
Pages
376
Keywords
electric vehicle, plug-in hybrid electric vehicle (PHEV), energy sources, energy management strategy, energy-storage system, charging technologies, control algorithms, battery, operating scenario, wireless power transfer (WPT)
Category
Technik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Emerging Technologies for Electric and Hybrid Vehicles