Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Lehrbücher
Einleitung in die Theorie der Elliptischen Funktionen
Page - 26 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 26 - in Einleitung in die Theorie der Elliptischen Funktionen

Image of the Page - 26 -

Image of the Page - 26 - in Einleitung in die Theorie der Elliptischen Funktionen

Text of the Page - 26 -

26 Einleitung. endlich und von Null verschieden. Dann ist ψ(z) = ∫ ϕ(z)dz, wenn ϕ(z) = f(z) (z−a)n gesetzt wird, in der Umgebung vona jedenfalls eine eindeutige Funktion, da dψdz weder null noch unendlich wird. Mithin ist auchϕ(z) = dψ(z) dz in der Umgebung von a eine eindeutige Funktion und da es auch f(z) sein soll, so ist das nur mo¨glich, wenn (z−a)n eine eindeutige Funktion in der Umgebung von a ist d. h. wennn eine ganze Zahl bedeutet. In der Umgebung einern-fachen Nullstelle hat also die eindeutige Funk- tion f(z) die Entwicklung f(z) = (z−a)n[A+A1(z−a)+A2(z−a)2 + · ·· ], woA von Null verschieden ist; denn es ist ϕ(z) =A+A1(z−a)+A2(z−a)2 + · ·· Ist a=∞, so ist die Entwicklung der Funktion, welche fu¨r z=∞nmal verschwindet, f(z) = 1 zn [ A+ A1 z + A2 z2 + · ·· ] , woA von Null verschieden ist. Ist f(z) in der Umgebung dern-fachen Unendlichkeitsstelle eindeutig, so folgt wie fru¨her, dass wenn (z−b)nf(z) =ϕ(z), ϕ(b) =B ist, woB endlich und von Null verschieden ist, dass ϕ(z) in der Umgebung von z= b eindeutig ist und daher ϕ(z) =B+B1(z−b)+B2(z−b)2 + · ··Bn(z−b)n+Bn+1(z−b)n+1 · ·· also f(z) = B (z−b)n+ B1 (z−b)n−1 + · ·· Bn−1 z−b+Bn+Bn+1(z−b)+ · ·· ist,worausdieFormderEntwicklungvonf(z)ersichtlichundaugenscheinlich ist, dass f(b) =∞wird, wie B(z−b)n. Ist b=∞, so muss f(z)zn =ψ(z) fu¨r z=∞ endlich und von Null verschie- den sein, also ist ψ(z) =B+ B1 z + · ··Bn−1 zn−1 + Bn zn + Bn+1 zn+1 + · ·· f(z) =Bzn+B1z n−1 + · ··Bn−1z+Bn+ Bn+1 z + · ·· , woraus wieder die Art des Unendlichwerdens fu¨r z=∞ ersichtlich.
back to the  book Einleitung in die Theorie der Elliptischen Funktionen"
Einleitung in die Theorie der Elliptischen Funktionen
Title
Einleitung in die Theorie der Elliptischen Funktionen
Author
Karl Bobek
Publisher
Druck und Verlag von B. G. Teubner
Location
Leipzig
Date
1984
Language
German
License
PD
Size
21.0 x 29.7 cm
Pages
290
Keywords
Mathematik, Math, Ellipsen, Funktionen, Intervall, Integral
Category
Lehrbücher
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Einleitung in die Theorie der Elliptischen Funktionen