Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 5 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 5 - in Differential Geometrical Theory of Statistics

Image of the Page - 5 -

Image of the Page - 5 - in Differential Geometrical Theory of Statistics

Text of the Page - 5 -

Entropy2016,18, 370 diffeomorphisms (TΦX−t)T is thereducedflowofavectorfield X̂onT∗M,which is the canonical liftof X to thecotangentbundleT∗M. The canonical lifts of a vector field to the tangent and cotangent bundles are used in Sections3and5. Theycanbedefinedtoofor time-dependentvectorfields. 2.TheLagrangianFormalism 2.1. TheConfigurationSpaceand theSpaceofKinematicStates The principles of mechanics were stated by the great English mathematician Isaac Newton (1642–1727) inhisbookPhilosophiaNaturalisPrincipiaMathematicapublished in1687 [19].Onthisbasis, a littlemore thanacentury later, JosephLouisLagrange (1736–1813) inhisbookMécaniqueanalytique [20] derivedtheequations (todayknownas theEuler–Lagrange equations)whichgovern themotionofa mechanicalsystemmadeofanynumberofmaterialpointsorrigidmaterialbodies interactingbetween thembyverygeneral forces,andeventuallysubmittedtoexternal forces. Inmodernmathematical language, these equations arewrittenon the configuration space and on the space of kinematic states of the considered mechanical system. The configuration space is a smooth n-dimensional manifold N whose elements are all the possible configurations of the system (a configuration being the position in space of all parts of the system). The space of kinematic states is the tangent bundle TN to the configuration space, which is 2n-dimensional. Eachelementof thespaceofkinematic states isavector tangent to theconfigurationspaceatoneof its elements, i.e., ataconfigurationof themechanical system,whichdescribes thevelocityatwhichthis configurationchangeswithtime. Inlocalcoordinatesaconfigurationofthesystemisdeterminedbythe ncoordinatesx1, . . . ,xnofapoint inN, andakinematicstatebythe2ncoordinatesx1, . . . ,xn,v1, . . .vn ofavector tangent toNatsomeelement inN. 2.2. TheEuler–LagrangeEquations Whenthemechanical systemis conservative, theEuler–Lagrangeequations involveasinglereal valuedfunctionLcalledtheLagrangianofthesystem,definedontheproductofthereal lineR (spanned bythevariable t representing the time)with themanifoldTNofkinematic statesof thesystem. In local coordinates, theLagrangianL is expressedasa functionof the2n+1variables, t,x1, . . . ,xn,v1, . . . ,vn andtheEuler–Lagrangeequationshavetheremarkablysimple form d dt ( ∂L ∂vi ( t,x(t),v(t) ))− ∂L ∂xi ( t,x(t),v(t) ) =0, 1≤ i≤n , wherex(t) stands forx1(t), . . . ,xn(t)andv(t) forv1(t), . . . ,vn(t)with,ofcourse, vi(t)= dxi(t) dt , 1≤ i≤n . 2.3.Hamilton’sPrinciple ofStationaryAction The great IrishmathematicianWilliamRowanHamilton (1805–1865) observed [21,22] that the Euler–LagrangeequationscanbeobtainedbyapplyingthestandardtechniquesofCalculusofVariations, due toLeonhardEuler (1707–1783)and JosephLouisLagrange, to theaction integral (Lagrangeobserved that factbeforeHamilton,but in the last editionofhisbookhechose toderive theEuler–Lagrange equationsbyapplicationof theprinciple ofvirtualworks,usingaverycleverevaluationof thevirtual workof inertial forces forasmooth infinitesimalvariationof themotion). IL(γ)= ∫ t1 t0 L ( t,x(t),v(t) ) dt , withv(t)= dx(t) dt , 5
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics