Seite - 5 - in Differential Geometrical Theory of Statistics
Bild der Seite - 5 -
Text der Seite - 5 -
Entropy2016,18, 370
diffeomorphisms (TΦX−t)T is thereducedflowofavectorfield X̂onT∗M,which is the canonical liftof
X to thecotangentbundleT∗M.
The canonical lifts of a vector field to the tangent and cotangent bundles are used in
Sections3and5. Theycanbedefinedtoofor time-dependentvectorfields.
2.TheLagrangianFormalism
2.1. TheConfigurationSpaceand theSpaceofKinematicStates
The principles of mechanics were stated by the great English mathematician Isaac Newton
(1642–1727) inhisbookPhilosophiaNaturalisPrincipiaMathematicapublished in1687 [19].Onthisbasis,
a littlemore thanacentury later, JosephLouisLagrange (1736–1813) inhisbookMécaniqueanalytique [20]
derivedtheequations (todayknownas theEuler–Lagrange equations)whichgovern themotionofa
mechanicalsystemmadeofanynumberofmaterialpointsorrigidmaterialbodies interactingbetween
thembyverygeneral forces,andeventuallysubmittedtoexternal forces.
Inmodernmathematical language, these equations arewrittenon the configuration space and
on the space of kinematic states of the considered mechanical system. The configuration space is
a smooth n-dimensional manifold N whose elements are all the possible configurations of the
system (a configuration being the position in space of all parts of the system). The space of
kinematic states is the tangent bundle TN to the configuration space, which is 2n-dimensional.
Eachelementof thespaceofkinematic states isavector tangent to theconfigurationspaceatoneof its
elements, i.e., ataconfigurationof themechanical system,whichdescribes thevelocityatwhichthis
configurationchangeswithtime. Inlocalcoordinatesaconfigurationofthesystemisdeterminedbythe
ncoordinatesx1, . . . ,xnofapoint inN, andakinematicstatebythe2ncoordinatesx1, . . . ,xn,v1, . . .vn
ofavector tangent toNatsomeelement inN.
2.2. TheEuler–LagrangeEquations
Whenthemechanical systemis conservative, theEuler–Lagrangeequations involveasinglereal
valuedfunctionLcalledtheLagrangianofthesystem,definedontheproductofthereal lineR (spanned
bythevariable t representing the time)with themanifoldTNofkinematic statesof thesystem. In local
coordinates, theLagrangianL is expressedasa functionof the2n+1variables, t,x1, . . . ,xn,v1, . . . ,vn
andtheEuler–Lagrangeequationshavetheremarkablysimple form
d
dt (
∂L
∂vi (
t,x(t),v(t) ))− ∂L
∂xi (
t,x(t),v(t) )
=0, 1≤ i≤n ,
wherex(t) stands forx1(t), . . . ,xn(t)andv(t) forv1(t), . . . ,vn(t)with,ofcourse,
vi(t)= dxi(t)
dt , 1≤ i≤n .
2.3.Hamilton’sPrinciple ofStationaryAction
The great IrishmathematicianWilliamRowanHamilton (1805–1865) observed [21,22] that the
Euler–LagrangeequationscanbeobtainedbyapplyingthestandardtechniquesofCalculusofVariations,
due toLeonhardEuler (1707–1783)and JosephLouisLagrange, to theaction integral (Lagrangeobserved
that factbeforeHamilton,but in the last editionofhisbookhechose toderive theEuler–Lagrange
equationsbyapplicationof theprinciple ofvirtualworks,usingaverycleverevaluationof thevirtual
workof inertial forces forasmooth infinitesimalvariationof themotion).
IL(γ)= ∫ t1
t0 L (
t,x(t),v(t) )
dt , withv(t)= dx(t)
dt ,
5
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik