Page - 7 - in Differential Geometrical Theory of Statistics
Image of the Page - 7 -
Text of the Page - 7 -
Entropy2016,18, 370
3. LagrangianSymmetries
3.1.AssumptionsandNotations
In this sectionN is theconfigurationspaceofaconservativeLagrangianmechanical systemwith
asmooth,maybetimedependentLagrangianL :R×TN→R. Let ̂LbethePoincaré-Cartan1-form
ontheevolutionspaceR×TN.
Severalkindsofsymmetriescanbedefinedforsuchasystem.Veryoften, theyarespecial cases
of infinitesimal symmetries of the Poincaré-Cartan form, whichplay an important part in the famous
Noether theorem.
Definition 2. An infinitesimal symmetry of the Poincaré-Cartan form ̂L is a vector field Z onR×TN
such that
L(Z)̂L=0,
L(Z)denoting theLiederivativeofdifferential formswith respect toZ.
Example1.
1. Letusassumethat theLagrangianLdoesnotdependonthe time t∈R, i.e., is a smooth functiononTN.
ThevectorfieldonR×TNdenotedby ∂
∂t ,whoseprojectiononR is equal to1andwhoseprojectionon
TN is0, is an infinitesimal symmetryof ̂L.
2. LetXbea smoothvectorfieldonNandXbe its canonical lift to the tangentbundleTN.Westill assume
that L doesnot depend on the time t. Moreoverwe assume thatX is an infinitesimal symmetry of the
LagrangianL, i.e., thatL(X)L=0.ConsideredasavectorfieldonR×TNwhoseprojectiononthe factor
R is0,X isan infinitesimal symmetryof ̂L.
3.2. TheNoetherTheoreminLagrangianFormalism
Theorem2 (E.Noether’sTheoreminLagrangianFormalism). LetZbean infinitesimal symmetryof the
Poincaré-Cartan form ̂L. For eachpossiblemotionγ : [t0,t1]→Nof theLagrangian system, the function
i(Z)̂L,definedonR×TN,keepsaconstantvaluealong theparametrizedcurve t → (
t, dγ(t)
dt )
.
Proof. Letγ : [t0,t1]→Nbeamotionof theLagrangiansystem, i.e., a solutionof theEuler–Lagrange
equations. TheEuler-CartanTheorem1proves that, forany t∈ [t0,t1],
i (
d
dt (
t, dγ(t)
dt ))
d̂L (
t, dγ(t)
dt )
=0.
SinceZ isan infinitesimalsymmetryof ̂L,
L(Z)̂L=0.
Using the well known formula relating the Lie derivative, the interior product and the
exteriorderivative
L(Z)= i(Z)◦d+d◦ i(Z)
7
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik