Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 7 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 7 - in Differential Geometrical Theory of Statistics

Image of the Page - 7 -

Image of the Page - 7 - in Differential Geometrical Theory of Statistics

Text of the Page - 7 -

Entropy2016,18, 370 3. LagrangianSymmetries 3.1.AssumptionsandNotations In this sectionN is theconfigurationspaceofaconservativeLagrangianmechanical systemwith asmooth,maybetimedependentLagrangianL :R×TN→R. Let ̂LbethePoincaré-Cartan1-form ontheevolutionspaceR×TN. Severalkindsofsymmetriescanbedefinedforsuchasystem.Veryoften, theyarespecial cases of infinitesimal symmetries of the Poincaré-Cartan form, whichplay an important part in the famous Noether theorem. Definition 2. An infinitesimal symmetry of the Poincaré-Cartan form ̂L is a vector field Z onR×TN such that L(Z)̂L=0, L(Z)denoting theLiederivativeofdifferential formswith respect toZ. Example1. 1. Letusassumethat theLagrangianLdoesnotdependonthe time t∈R, i.e., is a smooth functiononTN. ThevectorfieldonR×TNdenotedby ∂ ∂t ,whoseprojectiononR is equal to1andwhoseprojectionon TN is0, is an infinitesimal symmetryof ̂L. 2. LetXbea smoothvectorfieldonNandXbe its canonical lift to the tangentbundleTN.Westill assume that L doesnot depend on the time t. Moreoverwe assume thatX is an infinitesimal symmetry of the LagrangianL, i.e., thatL(X)L=0.ConsideredasavectorfieldonR×TNwhoseprojectiononthe factor R is0,X isan infinitesimal symmetryof ̂L. 3.2. TheNoetherTheoreminLagrangianFormalism Theorem2 (E.Noether’sTheoreminLagrangianFormalism). LetZbean infinitesimal symmetryof the Poincaré-Cartan form ̂L. For eachpossiblemotionγ : [t0,t1]→Nof theLagrangian system, the function i(Z)̂L,definedonR×TN,keepsaconstantvaluealong theparametrizedcurve t → ( t, dγ(t) dt ) . Proof. Letγ : [t0,t1]→Nbeamotionof theLagrangiansystem, i.e., a solutionof theEuler–Lagrange equations. TheEuler-CartanTheorem1proves that, forany t∈ [t0,t1], i ( d dt ( t, dγ(t) dt )) d̂L ( t, dγ(t) dt ) =0. SinceZ isan infinitesimalsymmetryof ̂L, L(Z)̂L=0. Using the well known formula relating the Lie derivative, the interior product and the exteriorderivative L(Z)= i(Z)◦d+d◦ i(Z) 7
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics