Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 7 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 7 - in Differential Geometrical Theory of Statistics

Bild der Seite - 7 -

Bild der Seite - 7 - in Differential Geometrical Theory of Statistics

Text der Seite - 7 -

Entropy2016,18, 370 3. LagrangianSymmetries 3.1.AssumptionsandNotations In this sectionN is theconfigurationspaceofaconservativeLagrangianmechanical systemwith asmooth,maybetimedependentLagrangianL :R×TN→R. Let ̂LbethePoincaré-Cartan1-form ontheevolutionspaceR×TN. Severalkindsofsymmetriescanbedefinedforsuchasystem.Veryoften, theyarespecial cases of infinitesimal symmetries of the Poincaré-Cartan form, whichplay an important part in the famous Noether theorem. Definition 2. An infinitesimal symmetry of the Poincaré-Cartan form ̂L is a vector field Z onR×TN such that L(Z)̂L=0, L(Z)denoting theLiederivativeofdifferential formswith respect toZ. Example1. 1. Letusassumethat theLagrangianLdoesnotdependonthe time t∈R, i.e., is a smooth functiononTN. ThevectorfieldonR×TNdenotedby ∂ ∂t ,whoseprojectiononR is equal to1andwhoseprojectionon TN is0, is an infinitesimal symmetryof ̂L. 2. LetXbea smoothvectorfieldonNandXbe its canonical lift to the tangentbundleTN.Westill assume that L doesnot depend on the time t. Moreoverwe assume thatX is an infinitesimal symmetry of the LagrangianL, i.e., thatL(X)L=0.ConsideredasavectorfieldonR×TNwhoseprojectiononthe factor R is0,X isan infinitesimal symmetryof ̂L. 3.2. TheNoetherTheoreminLagrangianFormalism Theorem2 (E.Noether’sTheoreminLagrangianFormalism). LetZbean infinitesimal symmetryof the Poincaré-Cartan form ̂L. For eachpossiblemotionγ : [t0,t1]→Nof theLagrangian system, the function i(Z)̂L,definedonR×TN,keepsaconstantvaluealong theparametrizedcurve t → ( t, dγ(t) dt ) . Proof. Letγ : [t0,t1]→Nbeamotionof theLagrangiansystem, i.e., a solutionof theEuler–Lagrange equations. TheEuler-CartanTheorem1proves that, forany t∈ [t0,t1], i ( d dt ( t, dγ(t) dt )) d̂L ( t, dγ(t) dt ) =0. SinceZ isan infinitesimalsymmetryof ̂L, L(Z)̂L=0. Using the well known formula relating the Lie derivative, the interior product and the exteriorderivative L(Z)= i(Z)◦d+d◦ i(Z) 7
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics