Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 8 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 8 - in Differential Geometrical Theory of Statistics

Image of the Page - 8 -

Image of the Page - 8 - in Differential Geometrical Theory of Statistics

Text of the Page - 8 -

Entropy2016,18, 370 wecanwrite d dt ( i(Z)˜L ( t, dγ(t) dt )) = 〈 di(Z)̂L, d dt ( t, dγ(t) dt )〉 =− 〈 i(Z)d̂L, d dt ( t, dγ(t) dt )〉 =0. Example 2. When the Lagrangian L does not depend on time, application of EmmyNoether’s theorem to the vector field ∂ ∂t shows that the energy EL remains constant during any possible motion of the system, since i ( ∂ ∂t ) ̂L=−EL. Remark2. 1. Theorem2 isdue to theGermanmathematicianEmmyNoether (1882–1935),whoproved itundermuch moregeneral assumptions than thoseusedhere. ForaverynicepresentationofEmmyNoether’s theorems in amuchmore general setting and their applications inmathematical physics, interested readers are referred to theverynicebookbyYvetteKosmann-Schwarzbach [28]. 2. Several generalizations of theNoether theorem exist. For example, if instead of being an infinitesimal symmetryof ̂L, i.e., insteadof satisfyingL(Z)̂L=0 thevectorfieldZsatisfies L(Z)̂L=df , where f :R×TM→R is a smooth function,which implies of courseL(Z)(d̂L)=0, the function i(Z)̂L− f keepsaconstantvaluealong t → ( t, dγ(t) dt ) . 3.3. TheLagrangianMomentumMap TheLiebracketof two infinitesimal symmetriesof ̂L is tooan infinitesimal symmetryof ̂L. Letus thereforeassumethat thereexistsafinite-dimensionalLiealgebraofvectorfieldsonR×TN whoseelementsare infinitesimalsymmetriesof ̂L. Definition3. Letψ : G→ A1(R×TN) be aLie algebras homomorphismof a finite-dimensional real Lie algebraG into the Lie algebra of smooth vector fields onR×TN such that, for each X ∈ G, ψ(X) is an infinitesimal symmetryof ̂L. TheLiealgebrashomomorphismψ is said tobeaLiealgebraactiononR×TN by infinitesimal symmetries of ̂L. ThemapKL :R×TN→G∗,which takes itsvalues in thedualG∗ of the Lie algebraG, definedby〈 KL(t,v),X 〉 = i ( ψ(X) ) ̂L(t,v) , X∈G , (t,v)∈R×TN , is called theLagrangianmomentumof theLie algebraactionψ. Corollary1 (ofE.Noether’sTheorem). Letψ :G→A1(R×TM)beanactionofafinite-dimensional real Lie algebraG on the evolutionspaceR×TNofa conservativeLagrangiansystem,by infinitesimal symmetries of thePoincaré-Cartan form ̂L. For each possiblemotionγ : [t0,t1]→Nof that system, the Lagrangian momentummapKL keepsaconstantvaluealong theparametrizedcurve t → ( t, dγ(t) dt ) . 8
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics