Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 8 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 8 - in Differential Geometrical Theory of Statistics

Bild der Seite - 8 -

Bild der Seite - 8 - in Differential Geometrical Theory of Statistics

Text der Seite - 8 -

Entropy2016,18, 370 wecanwrite d dt ( i(Z)˜L ( t, dγ(t) dt )) = 〈 di(Z)̂L, d dt ( t, dγ(t) dt )〉 =− 〈 i(Z)d̂L, d dt ( t, dγ(t) dt )〉 =0. Example 2. When the Lagrangian L does not depend on time, application of EmmyNoether’s theorem to the vector field ∂ ∂t shows that the energy EL remains constant during any possible motion of the system, since i ( ∂ ∂t ) ̂L=−EL. Remark2. 1. Theorem2 isdue to theGermanmathematicianEmmyNoether (1882–1935),whoproved itundermuch moregeneral assumptions than thoseusedhere. ForaverynicepresentationofEmmyNoether’s theorems in amuchmore general setting and their applications inmathematical physics, interested readers are referred to theverynicebookbyYvetteKosmann-Schwarzbach [28]. 2. Several generalizations of theNoether theorem exist. For example, if instead of being an infinitesimal symmetryof ̂L, i.e., insteadof satisfyingL(Z)̂L=0 thevectorfieldZsatisfies L(Z)̂L=df , where f :R×TM→R is a smooth function,which implies of courseL(Z)(d̂L)=0, the function i(Z)̂L− f keepsaconstantvaluealong t → ( t, dγ(t) dt ) . 3.3. TheLagrangianMomentumMap TheLiebracketof two infinitesimal symmetriesof ̂L is tooan infinitesimal symmetryof ̂L. Letus thereforeassumethat thereexistsafinite-dimensionalLiealgebraofvectorfieldsonR×TN whoseelementsare infinitesimalsymmetriesof ̂L. Definition3. Letψ : G→ A1(R×TN) be aLie algebras homomorphismof a finite-dimensional real Lie algebraG into the Lie algebra of smooth vector fields onR×TN such that, for each X ∈ G, ψ(X) is an infinitesimal symmetryof ̂L. TheLiealgebrashomomorphismψ is said tobeaLiealgebraactiononR×TN by infinitesimal symmetries of ̂L. ThemapKL :R×TN→G∗,which takes itsvalues in thedualG∗ of the Lie algebraG, definedby〈 KL(t,v),X 〉 = i ( ψ(X) ) ̂L(t,v) , X∈G , (t,v)∈R×TN , is called theLagrangianmomentumof theLie algebraactionψ. Corollary1 (ofE.Noether’sTheorem). Letψ :G→A1(R×TM)beanactionofafinite-dimensional real Lie algebraG on the evolutionspaceR×TNofa conservativeLagrangiansystem,by infinitesimal symmetries of thePoincaré-Cartan form ̂L. For each possiblemotionγ : [t0,t1]→Nof that system, the Lagrangian momentummapKL keepsaconstantvaluealong theparametrizedcurve t → ( t, dγ(t) dt ) . 8
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics