Seite - 8 - in Differential Geometrical Theory of Statistics
Bild der Seite - 8 -
Text der Seite - 8 -
Entropy2016,18, 370
wecanwrite
d
dt (
i(Z)˜L (
t, dγ(t)
dt ))
= 〈
di(Z)̂L, d
dt (
t, dγ(t)
dt )〉
=− 〈
i(Z)d̂L, d
dt (
t, dγ(t)
dt )〉
=0.
Example 2. When the Lagrangian L does not depend on time, application of EmmyNoether’s theorem to
the vector field ∂
∂t shows that the energy EL remains constant during any possible motion of the system,
since i (
∂
∂t )
̂L=−EL.
Remark2.
1. Theorem2 isdue to theGermanmathematicianEmmyNoether (1882–1935),whoproved itundermuch
moregeneral assumptions than thoseusedhere. ForaverynicepresentationofEmmyNoether’s theorems
in amuchmore general setting and their applications inmathematical physics, interested readers are
referred to theverynicebookbyYvetteKosmann-Schwarzbach [28].
2. Several generalizations of theNoether theorem exist. For example, if instead of being an infinitesimal
symmetryof ̂L, i.e., insteadof satisfyingL(Z)̂L=0 thevectorfieldZsatisfies
L(Z)̂L=df ,
where f :R×TM→R is a smooth function,which implies of courseL(Z)(d̂L)=0, the function
i(Z)̂L− f
keepsaconstantvaluealong t → (
t, dγ(t)
dt )
.
3.3. TheLagrangianMomentumMap
TheLiebracketof two infinitesimal symmetriesof ̂L is tooan infinitesimal symmetryof ̂L.
Letus thereforeassumethat thereexistsafinite-dimensionalLiealgebraofvectorfieldsonR×TN
whoseelementsare infinitesimalsymmetriesof ̂L.
Definition3. Letψ : G→ A1(R×TN) be aLie algebras homomorphismof a finite-dimensional real Lie
algebraG into the Lie algebra of smooth vector fields onR×TN such that, for each X ∈ G, ψ(X) is an
infinitesimal symmetryof ̂L. TheLiealgebrashomomorphismψ is said tobeaLiealgebraactiononR×TN
by infinitesimal symmetries of ̂L. ThemapKL :R×TN→G∗,which takes itsvalues in thedualG∗ of the
Lie algebraG, definedby〈
KL(t,v),X 〉
= i (
ψ(X) )
̂L(t,v) , X∈G , (t,v)∈R×TN ,
is called theLagrangianmomentumof theLie algebraactionψ.
Corollary1 (ofE.Noether’sTheorem). Letψ :G→A1(R×TM)beanactionofafinite-dimensional real
Lie algebraG on the evolutionspaceR×TNofa conservativeLagrangiansystem,by infinitesimal symmetries
of thePoincaré-Cartan form ̂L. For each possiblemotionγ : [t0,t1]→Nof that system, the Lagrangian
momentummapKL keepsaconstantvaluealong theparametrizedcurve t → (
t, dγ(t)
dt )
.
8
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik