Page - 9 - in Differential Geometrical Theory of Statistics
Image of the Page - 9 -
Text of the Page - 9 -
Entropy2016,18, 370
Proof. Since for each X â G the function (t,v) â â©KL(t,v),XâȘ keeps a constant value along
the parametrized curve t â (
t, dÎł(t)
dt )
, the map KL itself keeps a constant value along that
parametrizedcurve.
Example3. Letusassumethat theLagrangianLdoesnotdependexplicitlyon the time t and is invariantby
thecanonical lift to the tangentbundleof theactiononNof thesix-dimensionalgroupofEuclideandiplacements
(rotationsandtranslations) of thephysical space. Thecorresponding inïŹnitesimalactionof theLie algebraof
inïŹnitesimalEuclideandisplacements (considered as anactiononRĂTN, the actionon the factorRbeing
trivial) is anactionby inïŹnitesimal symmetries of ÌL. The six componentsof theLagrangianmomentummap
are the three componentsof the total linearmomentumandthe three componentsof the total angularmomentum.
Remark3. These results arevalidwithoutanyassumptionofhyper-regularityof theLagrangian.
3.4. TheEulerâPoincarĂ©Equation
InashortNote [29]published in1901, thegreat frenchmathematicianHenriPoincarĂ© (1854â1912)
proposedanewformulationof theequationsofmechanics.
Let N be the conïŹguration manifold of a conservative Lagrangian system, with a smooth
Lagrangian L : TN âRwhichdoes not depend explicitly on time. PoincarĂ© assumes that there
existsanhomomorphismÏofaïŹnite-dimensional realLiealgebraG into theLiealgebraA1(N)of
smoothvectorïŹeldsonN, suchthat foreachxâN, thevaluesatxof thevectorïŹeldsÏ(X),whenX
varies inG, completelyïŹll the tangentspaceTxN. TheactionÏ is thensaid tobe locally transitive.
Ofcourse theseassumptions implydimGâ„dimN.
Under theseassumptions,HenriPoincaréprovedthat theequationsofmotionof theLagrangian
systemcouldbewrittenonNĂGoronNĂGâ,whereGâ is thedualof theLiealgebraG, insteadof
on the tangentbundleTN. WhendimG=dimN (whichcanoccuronlywhen the tangentbundle
TN is trivial) the obtained equation, called theEulerâPoincarĂ© equation, is perfectly equivalent to the
EulerâLagrange equations and may, in certain cases, be easier to use. But when dimG > dimN,
thesystemmadebytheEulerâPoincarĂ©equation isunderdetermined.
LetÎł : [t0,t1]âN bea smoothparametrizedcurve inN. PoincarĂ©proves that there exists a
smoothcurveV : [t0,t1]âG in theLiealgebraG suchthat, foreach tâ [t0,t1],
Ï (
V(t) )(
Îł(t) )
= dÎł(t)
dt . (2)
WhendimG>dimN thesmoothcurveV inG isnotuniquelydeterminedbythesmoothcurve
Îł inN.However, insteadofwritingthesecond-orderEulerâLagrangedifferentialequationsonTN
satisïŹedbyÎłwhenthiscurve isapossiblemotionof theLagrangiansystem,PoincarĂ©derivesaïŹrst
orderdifferential equation for the curveV andproves that it is satisïŹed, togetherwithEquation(2), if and
only ifÎł is apossiblemotionof theLagrangiansystem.
LetÏ :NĂGâTNandL :NĂGâRbethemaps
Ï(x,X)=Ï(X)(x) , L(x,X)=LâŠÏ(x,X) .
We denote by d1L : NĂG â TâN and by d2L : NĂG â Gâ the partial differentials of
L :NĂGâRwithrespect to itsïŹrstvariablexâNandwithrespect to its secondvariableXâG.
ThemapÏ :NĂGâTN isa surjectivevectorbundlesmorphismof the trivialvectorbundleNĂG
into the tangentbundleTN. Its transpose ÏT :TâNâNĂGâ is thereforean injectivevector bundles
morphism,whichcanbewritten
ÏT(Ο)= (
ÏN(Ο), J(Ο) )
,
9
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik