Seite - 9 - in Differential Geometrical Theory of Statistics
Bild der Seite - 9 -
Text der Seite - 9 -
Entropy2016,18, 370
Proof. Since for each X ∈ G the function (t,v) → 〈KL(t,v),X〉 keeps a constant value along
the parametrized curve t → (
t, dγ(t)
dt )
, the map KL itself keeps a constant value along that
parametrizedcurve.
Example3. Letusassumethat theLagrangianLdoesnotdependexplicitlyon the time t and is invariantby
thecanonical lift to the tangentbundleof theactiononNof thesix-dimensionalgroupofEuclideandiplacements
(rotationsandtranslations) of thephysical space. Thecorresponding infinitesimalactionof theLie algebraof
infinitesimalEuclideandisplacements (considered as anactiononR×TN, the actionon the factorRbeing
trivial) is anactionby infinitesimal symmetries of ̂L. The six componentsof theLagrangianmomentummap
are the three componentsof the total linearmomentumandthe three componentsof the total angularmomentum.
Remark3. These results arevalidwithoutanyassumptionofhyper-regularityof theLagrangian.
3.4. TheEuler–PoincaréEquation
InashortNote [29]published in1901, thegreat frenchmathematicianHenriPoincaré (1854–1912)
proposedanewformulationof theequationsofmechanics.
Let N be the configuration manifold of a conservative Lagrangian system, with a smooth
Lagrangian L : TN →Rwhichdoes not depend explicitly on time. Poincaré assumes that there
existsanhomomorphismψofafinite-dimensional realLiealgebraG into theLiealgebraA1(N)of
smoothvectorfieldsonN, suchthat foreachx∈N, thevaluesatxof thevectorfieldsψ(X),whenX
varies inG, completelyfill the tangentspaceTxN. Theactionψ is thensaid tobe locally transitive.
Ofcourse theseassumptions implydimG≥dimN.
Under theseassumptions,HenriPoincaréprovedthat theequationsofmotionof theLagrangian
systemcouldbewrittenonN×GoronN×G∗,whereG∗ is thedualof theLiealgebraG, insteadof
on the tangentbundleTN. WhendimG=dimN (whichcanoccuronlywhen the tangentbundle
TN is trivial) the obtained equation, called theEuler–Poincaré equation, is perfectly equivalent to the
Euler–Lagrange equations and may, in certain cases, be easier to use. But when dimG > dimN,
thesystemmadebytheEuler–Poincaréequation isunderdetermined.
Letγ : [t0,t1]→N bea smoothparametrizedcurve inN. Poincaréproves that there exists a
smoothcurveV : [t0,t1]→G in theLiealgebraG suchthat, foreach t∈ [t0,t1],
ψ (
V(t) )(
γ(t) )
= dγ(t)
dt . (2)
WhendimG>dimN thesmoothcurveV inG isnotuniquelydeterminedbythesmoothcurve
γ inN.However, insteadofwritingthesecond-orderEuler–LagrangedifferentialequationsonTN
satisfiedbyγwhenthiscurve isapossiblemotionof theLagrangiansystem,Poincaréderivesafirst
orderdifferential equation for the curveV andproves that it is satisfied, togetherwithEquation(2), if and
only ifγ is apossiblemotionof theLagrangiansystem.
Letϕ :N×G→TNandL :N×G→Rbethemaps
ϕ(x,X)=ψ(X)(x) , L(x,X)=L◦ϕ(x,X) .
We denote by d1L : N×G → T∗N and by d2L : N×G → G∗ the partial differentials of
L :N×G→Rwithrespect to itsfirstvariablex∈Nandwithrespect to its secondvariableX∈G.
Themapϕ :N×G→TN isa surjectivevectorbundlesmorphismof the trivialvectorbundleN×G
into the tangentbundleTN. Its transpose ϕT :T∗N→N×G∗ is thereforean injectivevector bundles
morphism,whichcanbewritten
ϕT(ξ)= (
πN(ξ), J(ξ) )
,
9
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik