Page - 12 - in Differential Geometrical Theory of Statistics
Image of the Page - 12 -
Text of the Page - 12 -
Entropy2016,18, 370
Proof. SincedÏ=0, the fact thatkerÏ is completely integrable isan immediateconsequenceof the
Frobeniusâ theorem([27],Chapter III,Theorem5.1,p. 132). Theexistenceandunicityofasymplectic
formÏronM/kerÏ suchthatÏ= pâÏr results fromthefact thatM/kerÏ isbuiltbyquotientingM
bythekernelofÏ.
PresymplecticManifolds inMechanics
Letusgobackto theassumptionsandnotationsofSection4.1.Wehaveseen inRemark6that the
PoincarĂ©-Cartan1-forminHamiltonianformalism ÌHL onRĂTâNandthePoincarĂ©-Cartan1-form
inLagrangianformalism ÌLonRĂTNarerelatedby
ÌL=(idR,LL)âÌHL .
TheirexteriordifferentialsdÌL anddÌHL botharepresymplectic2-formsontheodd-dimensional
manifoldsRĂTN andRĂTâN, respectively. At any point of these manifolds, the kernels of
these closed 2-forms are one-dimensional. They therefore Proposition 1 determine foliations into
smooth curvesof thesemanifolds. TheEuler-CartanTheorem1shows that eachof thesecurves is a
possiblemotionof thesystem,describedeither in theLagrangian formalism,or in theHamiltonian
formalism,respectively.
Thesetofallpossiblemotionsof thesystem,calledbyJean-MarieSouriauthemanifoldofmotions
of thesystem, isdescribedbythequotient (RĂTN)/kerdÌL in theLagrangianformalism,andby
thequotient (RĂTâN)/kerdÌHL in theHamiltonian formalism. Bothare (maybenon-Hausdorff)
symplecticmanifolds, theprojectionsonthesequotientmanifoldsof thepresymplectic formsdÌL and
dÌHL bothbeingsymplectic forms. Ofcourse thediffeomorphism (idR,LL) :RĂTNâRĂTâN
projects onto a symplectomorphismbetween theLagrangianandHamiltoniandescriptionsof the
manifoldofmotionsof thesystem.
4.3. TheHamiltonEquation
Proposition 2. Let N be the conïŹguration manifold of a Lagrangian system whose Lagrangian
L :RĂTNâR, maybe time-dependent, is smooth and hyper-regular, and HL : RĂTâN â R be the
associated Hamiltonian DeïŹnition 4. Let Ï : [t0,t1] â N be a smooth curve parametrized by the time
tâ [t0,t1], and letÏ : [t0,t1]âTâNbetheparametrizedcurve inTâN
Ï(t)=LL (
t, dÎł(t)
dt )
, tâ [t0,t1] ,
whereLL :RĂTNâTâNis theLegendremapDeïŹnition1.
Theparametrizedcurve t âÎł(t) is amotionof the systemif andonly if theparametrizedcurve t âÏ(t)
satisïŹes the equatin, called theHamiltonequation,
i (
dÏ(t)
dt )
dΞN=âdHLt ,
wheredHLt = dHLâ âHLât dt is the differential of the function HLt : T âN âR inwhich the time t is
consideredasaparameterwith respect towhich there isnodifferentiation.
WhentheparametrizedcurveÏ satisïŹes theHamiltonequationstatedabove, it satisïŹes too the equation,
called the energyequation
d
dt (
HL (
t,Ï(t) ))
= âHL
ât (
t,Ï(t) )
.
Proof. Theseresultsdirectly followfromtheEuler-CartanTheorem1.
12
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik