Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 12 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 12 - in Differential Geometrical Theory of Statistics

Image of the Page - 12 -

Image of the Page - 12 - in Differential Geometrical Theory of Statistics

Text of the Page - 12 -

Entropy2016,18, 370 Proof. Sincedω=0, the fact thatkerω is completely integrable isan immediateconsequenceof the Frobenius’ theorem([27],Chapter III,Theorem5.1,p. 132). Theexistenceandunicityofasymplectic formωronM/kerω suchthatω= p∗ωr results fromthefact thatM/kerω isbuiltbyquotientingM bythekernelofω. PresymplecticManifolds inMechanics Letusgobackto theassumptionsandnotationsofSection4.1.Wehaveseen inRemark6that the PoincarĂ©-Cartan1-forminHamiltonianformalism ̂HL onR×T∗NandthePoincarĂ©-Cartan1-form inLagrangianformalism ̂LonR×TNarerelatedby ̂L=(idR,LL)∗̂HL . Theirexteriordifferentialsd̂L andd̂HL botharepresymplectic2-formsontheodd-dimensional manifoldsR×TN andR×T∗N, respectively. At any point of these manifolds, the kernels of these closed 2-forms are one-dimensional. They therefore Proposition 1 determine foliations into smooth curvesof thesemanifolds. TheEuler-CartanTheorem1shows that eachof thesecurves is a possiblemotionof thesystem,describedeither in theLagrangian formalism,or in theHamiltonian formalism,respectively. Thesetofallpossiblemotionsof thesystem,calledbyJean-MarieSouriauthemanifoldofmotions of thesystem, isdescribedbythequotient (R×TN)/kerd̂L in theLagrangianformalism,andby thequotient (R×T∗N)/kerd̂HL in theHamiltonian formalism. Bothare (maybenon-Hausdorff) symplecticmanifolds, theprojectionsonthesequotientmanifoldsof thepresymplectic formsd̂L and d̂HL bothbeingsymplectic forms. Ofcourse thediffeomorphism (idR,LL) :R×TN→R×T∗N projects onto a symplectomorphismbetween theLagrangianandHamiltoniandescriptionsof the manifoldofmotionsof thesystem. 4.3. TheHamiltonEquation Proposition 2. Let N be the conïŹguration manifold of a Lagrangian system whose Lagrangian L :R×TN→R, maybe time-dependent, is smooth and hyper-regular, and HL : R×T∗N → R be the associated Hamiltonian DeïŹnition 4. Let ϕ : [t0,t1] → N be a smooth curve parametrized by the time t∈ [t0,t1], and letψ : [t0,t1]→T∗Nbetheparametrizedcurve inT∗N ψ(t)=LL ( t, dÎł(t) dt ) , t∈ [t0,t1] , whereLL :R×TN→T∗Nis theLegendremapDeïŹnition1. Theparametrizedcurve t →γ(t) is amotionof the systemif andonly if theparametrizedcurve t →ψ(t) satisïŹes the equatin, called theHamiltonequation, i ( dψ(t) dt ) dΞN=−dHLt , wheredHLt = dHL− ∂HL∂t dt is the differential of the function HLt : T ∗N →R inwhich the time t is consideredasaparameterwith respect towhich there isnodifferentiation. Whentheparametrizedcurveψ satisïŹes theHamiltonequationstatedabove, it satisïŹes too the equation, called the energyequation d dt ( HL ( t,ψ(t) )) = ∂HL ∂t ( t,ψ(t) ) . Proof. Theseresultsdirectly followfromtheEuler-CartanTheorem1. 12
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics