Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 12 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 12 - in Differential Geometrical Theory of Statistics

Bild der Seite - 12 -

Bild der Seite - 12 - in Differential Geometrical Theory of Statistics

Text der Seite - 12 -

Entropy2016,18, 370 Proof. Sincedω=0, the fact thatkerω is completely integrable isan immediateconsequenceof the Frobenius’ theorem([27],Chapter III,Theorem5.1,p. 132). Theexistenceandunicityofasymplectic formωronM/kerω suchthatω= p∗ωr results fromthefact thatM/kerω isbuiltbyquotientingM bythekernelofω. PresymplecticManifolds inMechanics Letusgobackto theassumptionsandnotationsofSection4.1.Wehaveseen inRemark6that the PoincarĂ©-Cartan1-forminHamiltonianformalism ̂HL onR×T∗NandthePoincarĂ©-Cartan1-form inLagrangianformalism ̂LonR×TNarerelatedby ̂L=(idR,LL)∗̂HL . Theirexteriordifferentialsd̂L andd̂HL botharepresymplectic2-formsontheodd-dimensional manifoldsR×TN andR×T∗N, respectively. At any point of these manifolds, the kernels of these closed 2-forms are one-dimensional. They therefore Proposition 1 determine foliations into smooth curvesof thesemanifolds. TheEuler-CartanTheorem1shows that eachof thesecurves is a possiblemotionof thesystem,describedeither in theLagrangian formalism,or in theHamiltonian formalism,respectively. Thesetofallpossiblemotionsof thesystem,calledbyJean-MarieSouriauthemanifoldofmotions of thesystem, isdescribedbythequotient (R×TN)/kerd̂L in theLagrangianformalism,andby thequotient (R×T∗N)/kerd̂HL in theHamiltonian formalism. Bothare (maybenon-Hausdorff) symplecticmanifolds, theprojectionsonthesequotientmanifoldsof thepresymplectic formsd̂L and d̂HL bothbeingsymplectic forms. Ofcourse thediffeomorphism (idR,LL) :R×TN→R×T∗N projects onto a symplectomorphismbetween theLagrangianandHamiltoniandescriptionsof the manifoldofmotionsof thesystem. 4.3. TheHamiltonEquation Proposition 2. Let N be the conïŹguration manifold of a Lagrangian system whose Lagrangian L :R×TN→R, maybe time-dependent, is smooth and hyper-regular, and HL : R×T∗N → R be the associated Hamiltonian DeïŹnition 4. Let ϕ : [t0,t1] → N be a smooth curve parametrized by the time t∈ [t0,t1], and letψ : [t0,t1]→T∗Nbetheparametrizedcurve inT∗N ψ(t)=LL ( t, dÎł(t) dt ) , t∈ [t0,t1] , whereLL :R×TN→T∗Nis theLegendremapDeïŹnition1. Theparametrizedcurve t →γ(t) is amotionof the systemif andonly if theparametrizedcurve t →ψ(t) satisïŹes the equatin, called theHamiltonequation, i ( dψ(t) dt ) dΞN=−dHLt , wheredHLt = dHL− ∂HL∂t dt is the differential of the function HLt : T ∗N →R inwhich the time t is consideredasaparameterwith respect towhich there isnodifferentiation. Whentheparametrizedcurveψ satisïŹes theHamiltonequationstatedabove, it satisïŹes too the equation, called the energyequation d dt ( HL ( t,ψ(t) )) = ∂HL ∂t ( t,ψ(t) ) . Proof. Theseresultsdirectly followfromtheEuler-CartanTheorem1. 12
zurĂŒck zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics