Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 14 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 14 - in Differential Geometrical Theory of Statistics

Image of the Page - 14 -

Image of the Page - 14 - in Differential Geometrical Theory of Statistics

Text of the Page - 14 -

Entropy2016,18, 370 Theorem4 (W.M.Tulczyjew). With thenotations speciïŹedaboveSection4.3.2, letXH :T∗N→TT∗Nbe theHamiltonianvectorïŹeldonthesymplecticmanifold(T∗N,dΞN)associatedtotheHamiltonianH :T∗N→R, deïŹnedby i(XH)dΞN=−dH.Then XH(T∗N)=ÎČ−1N ( dH(T∗N) ) . Moreover, the equality α−1N ( dL(TN) ) =ÎČ−1N ( dH(T∗N) ) holds if andonly if theLagrangianL ishyper-regularandsuch that dH=d ( EL◩L−1L ) , whereLL :TN→T∗Nis theLegendremapandEL :TN→R the energyassociated to theLagrangianL. The interestedreaderwillïŹndtheproofof that theoremintheworksofTulczyjew([34,35]). WhenL isnothyper-regular,α−1N ( dL(TN) ) still isaLagrangiansubmanifoldof thesymplectic manifold ( TT∗N,α∗N(dΞTN) ) , but it isnomore thegraphofasmoothvectorïŹeldXH deïŹnedonT∗N. Tulczyjewproposes toconsider thisLagrangiansubmanifoldasan implicitHamiltonequationonT∗N. TheseresultscanbeextendedtoLagrangiansandHamiltonianswhichmaydependontime. 4.4. TheHamiltonianFormalismonSymplectic andPoissonManifolds 4.4.1. TheHamiltonFormalismonSymplecticManifolds In pure mathematics as well as in applications of mathematics to mechanics and physics, symplecticmanifoldsother thancotangentbundlesare encountered. A theoremdue to the french mathematicianGastonDarboux (1842–1917) asserts that any symplecticmanifold (M,ω) is of even dimension2nand is locally isomorphic to the cotangentbundle toan-dimensionalmanifold: ina neighbourhoodofeachof itspoint thereexist local coordinates (x1,. . . ,xn,p1,. . . ,pn), calledDarboux coordinateswithwhichthesymplectic formω is expressedexactlyas thecanonical symplectic formof acotangentbundle: ω= n ∑ i=1 dpi∧dxi . Let (M,ω) be a symplectic manifold and H : R×M → R a smooth function, said to be a time-dependentHamiltonian. Itdeterminesa time-dependentHamiltonianvectorïŹeldXH onM, suchthat i(XH)ω=−dHt , Ht :M→Rbeingthe functionH inwhichthevariable t is consideredasaparameterwithrespect to whichnodifferentiation ismade. TheHamiltonequationdeterminedbyH is thedifferentialequation dψ(t) dt =XH ( t,ψ(t) ) . TheHamiltonian formalismcan therefore be applied to any smooth,maybe timedependent HamiltonianonM, evenwhenthere isnoassociatedLagrangian. TheHamiltonianformalismisnot limitedtosymplecticmanifolds: it canbeapplied, forexample, toPoissonmanifolds [36], contactmanifoldsand Jacobimanifolds [37]. Forsimplicity Iwill consideronly Poissonmanifolds. Readers interested in Jacobimanifoldsandtheirgeneralizationsarereferredto the papersbyLichnerowiczquotedaboveandto thevery importantpaperbyKirillov [38]. 14
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics