Seite - 14 - in Differential Geometrical Theory of Statistics
Bild der Seite - 14 -
Text der Seite - 14 -
Entropy2016,18, 370
Theorem4 (W.M.Tulczyjew). With thenotations speciïŹedaboveSection4.3.2, letXH :TâNâTTâNbe
theHamiltonianvectorïŹeldonthesymplecticmanifold(TâN,dΞN)associatedtotheHamiltonianH :TâNâR,
deïŹnedby i(XH)dΞN=âdH.Then
XH(TâN)=ÎČâ1N (
dH(TâN) )
.
Moreover, the equality
뱉1N (
dL(TN) ) =ÎČâ1N (
dH(TâN) )
holds if andonly if theLagrangianL ishyper-regularandsuch that
dH=d
( ELâŠLâ1L )
,
whereLL :TNâTâNis theLegendremapandEL :TNâR the energyassociated to theLagrangianL.
The interestedreaderwillïŹndtheproofof that theoremintheworksofTulczyjew([34,35]).
WhenL isnothyper-regular,뱉1N (
dL(TN) )
still isaLagrangiansubmanifoldof thesymplectic
manifold ( TTâN,αâN(dΞTN) )
, but it isnomore thegraphofasmoothvectorïŹeldXH deïŹnedonTâN.
Tulczyjewproposes toconsider thisLagrangiansubmanifoldasan implicitHamiltonequationonTâN.
TheseresultscanbeextendedtoLagrangiansandHamiltonianswhichmaydependontime.
4.4. TheHamiltonianFormalismonSymplectic andPoissonManifolds
4.4.1. TheHamiltonFormalismonSymplecticManifolds
In pure mathematics as well as in applications of mathematics to mechanics and physics,
symplecticmanifoldsother thancotangentbundlesare encountered. A theoremdue to the french
mathematicianGastonDarboux (1842â1917) asserts that any symplecticmanifold (M,Ï) is of even
dimension2nand is locally isomorphic to the cotangentbundle toan-dimensionalmanifold: ina
neighbourhoodofeachof itspoint thereexist local coordinates (x1,. . . ,xn,p1,. . . ,pn), calledDarboux
coordinateswithwhichthesymplectic formÏ is expressedexactlyas thecanonical symplectic formof
acotangentbundle:
Ï= n
â
i=1 dpiâ§dxi .
Let (M,Ï) be a symplectic manifold and H : RĂM â R a smooth function, said to be a
time-dependentHamiltonian. Itdeterminesa time-dependentHamiltonianvectorïŹeldXH onM, suchthat
i(XH)Ï=âdHt ,
Ht :MâRbeingthe functionH inwhichthevariable t is consideredasaparameterwithrespect to
whichnodifferentiation ismade.
TheHamiltonequationdeterminedbyH is thedifferentialequation
dÏ(t)
dt =XH (
t,Ï(t) )
.
TheHamiltonian formalismcan therefore be applied to any smooth,maybe timedependent
HamiltonianonM, evenwhenthere isnoassociatedLagrangian.
TheHamiltonianformalismisnot limitedtosymplecticmanifolds: it canbeapplied, forexample,
toPoissonmanifolds [36], contactmanifoldsand Jacobimanifolds [37]. Forsimplicity Iwill consideronly
Poissonmanifolds. Readers interested in Jacobimanifoldsandtheirgeneralizationsarereferredto the
papersbyLichnerowiczquotedaboveandto thevery importantpaperbyKirillov [38].
14
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik