Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 14 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 14 - in Differential Geometrical Theory of Statistics

Bild der Seite - 14 -

Bild der Seite - 14 - in Differential Geometrical Theory of Statistics

Text der Seite - 14 -

Entropy2016,18, 370 Theorem4 (W.M.Tulczyjew). With thenotations speciïŹedaboveSection4.3.2, letXH :T∗N→TT∗Nbe theHamiltonianvectorïŹeldonthesymplecticmanifold(T∗N,dΞN)associatedtotheHamiltonianH :T∗N→R, deïŹnedby i(XH)dΞN=−dH.Then XH(T∗N)=ÎČ−1N ( dH(T∗N) ) . Moreover, the equality α−1N ( dL(TN) ) =ÎČ−1N ( dH(T∗N) ) holds if andonly if theLagrangianL ishyper-regularandsuch that dH=d ( EL◩L−1L ) , whereLL :TN→T∗Nis theLegendremapandEL :TN→R the energyassociated to theLagrangianL. The interestedreaderwillïŹndtheproofof that theoremintheworksofTulczyjew([34,35]). WhenL isnothyper-regular,α−1N ( dL(TN) ) still isaLagrangiansubmanifoldof thesymplectic manifold ( TT∗N,α∗N(dΞTN) ) , but it isnomore thegraphofasmoothvectorïŹeldXH deïŹnedonT∗N. Tulczyjewproposes toconsider thisLagrangiansubmanifoldasan implicitHamiltonequationonT∗N. TheseresultscanbeextendedtoLagrangiansandHamiltonianswhichmaydependontime. 4.4. TheHamiltonianFormalismonSymplectic andPoissonManifolds 4.4.1. TheHamiltonFormalismonSymplecticManifolds In pure mathematics as well as in applications of mathematics to mechanics and physics, symplecticmanifoldsother thancotangentbundlesare encountered. A theoremdue to the french mathematicianGastonDarboux (1842–1917) asserts that any symplecticmanifold (M,ω) is of even dimension2nand is locally isomorphic to the cotangentbundle toan-dimensionalmanifold: ina neighbourhoodofeachof itspoint thereexist local coordinates (x1,. . . ,xn,p1,. . . ,pn), calledDarboux coordinateswithwhichthesymplectic formω is expressedexactlyas thecanonical symplectic formof acotangentbundle: ω= n ∑ i=1 dpi∧dxi . Let (M,ω) be a symplectic manifold and H : R×M → R a smooth function, said to be a time-dependentHamiltonian. Itdeterminesa time-dependentHamiltonianvectorïŹeldXH onM, suchthat i(XH)ω=−dHt , Ht :M→Rbeingthe functionH inwhichthevariable t is consideredasaparameterwithrespect to whichnodifferentiation ismade. TheHamiltonequationdeterminedbyH is thedifferentialequation dψ(t) dt =XH ( t,ψ(t) ) . TheHamiltonian formalismcan therefore be applied to any smooth,maybe timedependent HamiltonianonM, evenwhenthere isnoassociatedLagrangian. TheHamiltonianformalismisnot limitedtosymplecticmanifolds: it canbeapplied, forexample, toPoissonmanifolds [36], contactmanifoldsand Jacobimanifolds [37]. Forsimplicity Iwill consideronly Poissonmanifolds. Readers interested in Jacobimanifoldsandtheirgeneralizationsarereferredto the papersbyLichnerowiczquotedaboveandto thevery importantpaperbyKirillov [38]. 14
zurĂŒck zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics