Page - 15 - in Differential Geometrical Theory of Statistics
Image of the Page - 15 -
Text of the Page - 15 -
Entropy2016,18, 370
DeïŹnition 6. APoissonmanifold is a smoothmanifold Pwhose algebra of smooth functionsCâ(P,R) is
endowedwithabilinearcomposition law,called thePoissonbracket,whichassociates toanypair(f,g)of smooth
functionsonPanother smooth functiondenotedby{f,g}, that compositionsatisfying the threeproperties
1. it is skew-symmetric,
{g, f}=â{f,g},
2. it satisïŹes the Jacobi identity{ f,{g,h}}+{g,{h, f}}+{h,{f,g}}=0,
3. it satisïŹes theLeibniz identity
{f,gh}={f,g}h+g{f,h}.
Example4.
1. Onthevectorspaceofsmooth functionsdeïŹnedonasymplecticmanifold(M,Ï), thereexistsacomposition
law, called thePoissonbracket,which satisïŹes theproperties stated inDeïŹnition6. Letus recall brieïŹy its
deïŹnition. The symplectic formÏ allowsus toassociate, to anysmooth function f âCâ(M,R), a smooth
vectorïŹeldXf âA1(M,R), called theHamiltonianvectorïŹeldassociated to f, deïŹnedby
i(Xf)Ï=âdf .
The Poisson bracket {f,g} of two smooth functions f and g â Câ(M,R) is deïŹned by the three
equivalent equalities
{f,g}= i(Xf)dg=âi(Xg)df=Ï(Xf,Xg) .
Anysymplecticmanifold is therefore aPoissonmanifold.
ThePoissonbracket of smooth functionsdeïŹnedonasymplecticmanifold (whenthat symplecticmanifold
is a cotangentbundle)wasdiscoveredbySimĂ©onDenisPoisson (1781â1840) [39].
2. LetG beaïŹnite-dimensional realLie algebra, and letGâ be itsdualvector space. For eachsmooth function
f âCâ(Gâ,R)andeachζâGâ, thedifferentialdf(ζ) is a linear formonGâ, inotherwordsanelementof
thedualvector spaceofGâ. IdentifyingwithG thedualvector spaceofGâ,wecan therefore considerdf(ζ)
asanelement inG.With this identiïŹcation,wecandeïŹne thePoissonbracket of twosmooth functions f
andgâCâ(Gâ,R)by
{f,g}(ζ)= [df(ζ),dg(ζ)] , ζâGâ ,
thebracket in the righthandsidebeing thebracket in theLiealgebraG. ThePoissonbracket of functions
in Câ(Gâ,R) so deïŹned satiïŹes the properties stated in DeïŹnition 6. The dual vector space of any
ïŹnite-dimensional real Lie algebra is therefore endowedwith a Poisson structure, called its canonical
Lie-Poisson structure or its Kirillov-Kostant-Souriau Poisson structure. Discovered by Sophus Lie,
this structure was indeed rediscovered independently by Alexander Kirillov, Bertram Kostant and
Jean-MarieSouriau.
3. A symplectic cocycle of a ïŹnite-dimensional, real Lie algebraG is a skew-symmetric bilinearmapÎ :
GĂGâGâwhichsatisïŹes, for allX,YandZâG,
Î (
[X,Y],Z )
+Î (
[Y,Z],X )
+Î (
[Z,X],Y )
=0.
ThecanonicalLie-Poissonbracket of twosmooth functions f andgâCâ(Gâ,R) canbemodiïŹedbymeans
of the symplectic cocycleÎ, by setting
{f,g}Î(ζ)= [
df(ζ),dg(ζ) ]âÎ(df(ζ),dg(ζ)) , ζâGâ .
15
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik