Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 15 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 15 - in Differential Geometrical Theory of Statistics

Image of the Page - 15 -

Image of the Page - 15 - in Differential Geometrical Theory of Statistics

Text of the Page - 15 -

Entropy2016,18, 370 DeïŹnition 6. APoissonmanifold is a smoothmanifold Pwhose algebra of smooth functionsC∞(P,R) is endowedwithabilinearcomposition law,called thePoissonbracket,whichassociates toanypair(f,g)of smooth functionsonPanother smooth functiondenotedby{f,g}, that compositionsatisfying the threeproperties 1. it is skew-symmetric, {g, f}=−{f,g}, 2. it satisïŹes the Jacobi identity{ f,{g,h}}+{g,{h, f}}+{h,{f,g}}=0, 3. it satisïŹes theLeibniz identity {f,gh}={f,g}h+g{f,h}. Example4. 1. Onthevectorspaceofsmooth functionsdeïŹnedonasymplecticmanifold(M,ω), thereexistsacomposition law, called thePoissonbracket,which satisïŹes theproperties stated inDeïŹnition6. Letus recall brieïŹ‚y its deïŹnition. The symplectic formω allowsus toassociate, to anysmooth function f ∈C∞(M,R), a smooth vectorïŹeldXf ∈A1(M,R), called theHamiltonianvectorïŹeldassociated to f, deïŹnedby i(Xf)ω=−df . The Poisson bracket {f,g} of two smooth functions f and g ∈ C∞(M,R) is deïŹned by the three equivalent equalities {f,g}= i(Xf)dg=−i(Xg)df=ω(Xf,Xg) . Anysymplecticmanifold is therefore aPoissonmanifold. ThePoissonbracket of smooth functionsdeïŹnedonasymplecticmanifold (whenthat symplecticmanifold is a cotangentbundle)wasdiscoveredbySimĂ©onDenisPoisson (1781–1840) [39]. 2. LetG beaïŹnite-dimensional realLie algebra, and letG∗ be itsdualvector space. For eachsmooth function f ∈C∞(G∗,R)andeachζ∈G∗, thedifferentialdf(ζ) is a linear formonG∗, inotherwordsanelementof thedualvector spaceofG∗. IdentifyingwithG thedualvector spaceofG∗,wecan therefore considerdf(ζ) asanelement inG.With this identiïŹcation,wecandeïŹne thePoissonbracket of twosmooth functions f andg∈C∞(G∗,R)by {f,g}(ζ)= [df(ζ),dg(ζ)] , ζ∈G∗ , thebracket in the righthandsidebeing thebracket in theLiealgebraG. ThePoissonbracket of functions in C∞(G∗,R) so deïŹned satiïŹes the properties stated in DeïŹnition 6. The dual vector space of any ïŹnite-dimensional real Lie algebra is therefore endowedwith a Poisson structure, called its canonical Lie-Poisson structure or its Kirillov-Kostant-Souriau Poisson structure. Discovered by Sophus Lie, this structure was indeed rediscovered independently by Alexander Kirillov, Bertram Kostant and Jean-MarieSouriau. 3. A symplectic cocycle of a ïŹnite-dimensional, real Lie algebraG is a skew-symmetric bilinearmapΘ : G×G→G∗whichsatisïŹes, for allX,YandZ∈G, Θ ( [X,Y],Z ) +Θ ( [Y,Z],X ) +Θ ( [Z,X],Y ) =0. ThecanonicalLie-Poissonbracket of twosmooth functions f andg∈C∞(G∗,R) canbemodiïŹedbymeans of the symplectic cocycleΘ, by setting {f,g}Θ(ζ)= [ df(ζ),dg(ζ) ]−Θ(df(ζ),dg(ζ)) , ζ∈G∗ . 15
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics