Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 15 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 15 - in Differential Geometrical Theory of Statistics

Bild der Seite - 15 -

Bild der Seite - 15 - in Differential Geometrical Theory of Statistics

Text der Seite - 15 -

Entropy2016,18, 370 Definition 6. APoissonmanifold is a smoothmanifold Pwhose algebra of smooth functionsC∞(P,R) is endowedwithabilinearcomposition law,called thePoissonbracket,whichassociates toanypair(f,g)of smooth functionsonPanother smooth functiondenotedby{f,g}, that compositionsatisfying the threeproperties 1. it is skew-symmetric, {g, f}=−{f,g}, 2. it satisfies the Jacobi identity{ f,{g,h}}+{g,{h, f}}+{h,{f,g}}=0, 3. it satisfies theLeibniz identity {f,gh}={f,g}h+g{f,h}. Example4. 1. Onthevectorspaceofsmooth functionsdefinedonasymplecticmanifold(M,ω), thereexistsacomposition law, called thePoissonbracket,which satisfies theproperties stated inDefinition6. Letus recall briefly its definition. The symplectic formω allowsus toassociate, to anysmooth function f ∈C∞(M,R), a smooth vectorfieldXf ∈A1(M,R), called theHamiltonianvectorfieldassociated to f, definedby i(Xf)ω=−df . The Poisson bracket {f,g} of two smooth functions f and g ∈ C∞(M,R) is defined by the three equivalent equalities {f,g}= i(Xf)dg=−i(Xg)df=ω(Xf,Xg) . Anysymplecticmanifold is therefore aPoissonmanifold. ThePoissonbracket of smooth functionsdefinedonasymplecticmanifold (whenthat symplecticmanifold is a cotangentbundle)wasdiscoveredbySiméonDenisPoisson (1781–1840) [39]. 2. LetG beafinite-dimensional realLie algebra, and letG∗ be itsdualvector space. For eachsmooth function f ∈C∞(G∗,R)andeachζ∈G∗, thedifferentialdf(ζ) is a linear formonG∗, inotherwordsanelementof thedualvector spaceofG∗. IdentifyingwithG thedualvector spaceofG∗,wecan therefore considerdf(ζ) asanelement inG.With this identification,wecandefine thePoissonbracket of twosmooth functions f andg∈C∞(G∗,R)by {f,g}(ζ)= [df(ζ),dg(ζ)] , ζ∈G∗ , thebracket in the righthandsidebeing thebracket in theLiealgebraG. ThePoissonbracket of functions in C∞(G∗,R) so defined satifies the properties stated in Definition 6. The dual vector space of any finite-dimensional real Lie algebra is therefore endowedwith a Poisson structure, called its canonical Lie-Poisson structure or its Kirillov-Kostant-Souriau Poisson structure. Discovered by Sophus Lie, this structure was indeed rediscovered independently by Alexander Kirillov, Bertram Kostant and Jean-MarieSouriau. 3. A symplectic cocycle of a finite-dimensional, real Lie algebraG is a skew-symmetric bilinearmapΘ : G×G→G∗whichsatisfies, for allX,YandZ∈G, Θ ( [X,Y],Z ) +Θ ( [Y,Z],X ) +Θ ( [Z,X],Y ) =0. ThecanonicalLie-Poissonbracket of twosmooth functions f andg∈C∞(G∗,R) canbemodifiedbymeans of the symplectic cocycleΘ, by setting {f,g}Θ(ζ)= [ df(ζ),dg(ζ) ]−Θ(df(ζ),dg(ζ)) , ζ∈G∗ . 15
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics