Seite - 15 - in Differential Geometrical Theory of Statistics
Bild der Seite - 15 -
Text der Seite - 15 -
Entropy2016,18, 370
Definition 6. APoissonmanifold is a smoothmanifold Pwhose algebra of smooth functionsC∞(P,R) is
endowedwithabilinearcomposition law,called thePoissonbracket,whichassociates toanypair(f,g)of smooth
functionsonPanother smooth functiondenotedby{f,g}, that compositionsatisfying the threeproperties
1. it is skew-symmetric,
{g, f}=−{f,g},
2. it satisfies the Jacobi identity{ f,{g,h}}+{g,{h, f}}+{h,{f,g}}=0,
3. it satisfies theLeibniz identity
{f,gh}={f,g}h+g{f,h}.
Example4.
1. Onthevectorspaceofsmooth functionsdefinedonasymplecticmanifold(M,ω), thereexistsacomposition
law, called thePoissonbracket,which satisfies theproperties stated inDefinition6. Letus recall briefly its
definition. The symplectic formω allowsus toassociate, to anysmooth function f ∈C∞(M,R), a smooth
vectorfieldXf ∈A1(M,R), called theHamiltonianvectorfieldassociated to f, definedby
i(Xf)ω=−df .
The Poisson bracket {f,g} of two smooth functions f and g ∈ C∞(M,R) is defined by the three
equivalent equalities
{f,g}= i(Xf)dg=−i(Xg)df=ω(Xf,Xg) .
Anysymplecticmanifold is therefore aPoissonmanifold.
ThePoissonbracket of smooth functionsdefinedonasymplecticmanifold (whenthat symplecticmanifold
is a cotangentbundle)wasdiscoveredbySiméonDenisPoisson (1781–1840) [39].
2. LetG beafinite-dimensional realLie algebra, and letG∗ be itsdualvector space. For eachsmooth function
f ∈C∞(G∗,R)andeachζ∈G∗, thedifferentialdf(ζ) is a linear formonG∗, inotherwordsanelementof
thedualvector spaceofG∗. IdentifyingwithG thedualvector spaceofG∗,wecan therefore considerdf(ζ)
asanelement inG.With this identification,wecandefine thePoissonbracket of twosmooth functions f
andg∈C∞(G∗,R)by
{f,g}(ζ)= [df(ζ),dg(ζ)] , ζ∈G∗ ,
thebracket in the righthandsidebeing thebracket in theLiealgebraG. ThePoissonbracket of functions
in C∞(G∗,R) so defined satifies the properties stated in Definition 6. The dual vector space of any
finite-dimensional real Lie algebra is therefore endowedwith a Poisson structure, called its canonical
Lie-Poisson structure or its Kirillov-Kostant-Souriau Poisson structure. Discovered by Sophus Lie,
this structure was indeed rediscovered independently by Alexander Kirillov, Bertram Kostant and
Jean-MarieSouriau.
3. A symplectic cocycle of a finite-dimensional, real Lie algebraG is a skew-symmetric bilinearmapΘ :
G×G→G∗whichsatisfies, for allX,YandZ∈G,
Θ (
[X,Y],Z )
+Θ (
[Y,Z],X )
+Θ (
[Z,X],Y )
=0.
ThecanonicalLie-Poissonbracket of twosmooth functions f andg∈C∞(G∗,R) canbemodifiedbymeans
of the symplectic cocycleΘ, by setting
{f,g}Θ(ζ)= [
df(ζ),dg(ζ) ]−Θ(df(ζ),dg(ζ)) , ζ∈G∗ .
15
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik