Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 17 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 17 - in Differential Geometrical Theory of Statistics

Image of the Page - 17 -

Image of the Page - 17 - in Differential Geometrical Theory of Statistics

Text of the Page - 17 -

Entropy2016,18, 370 • a symplectic structure, determinedbyasymplectic formω, i.e., a2-formωwhich isbothclosed (dω=0)andnondegenerate (kerω={0}), • aPoissonstructure,determinedbyasmoothPoissonbivectorfieldΛsatisfying [Λ,Λ]=0. Definition 7. A presymplectic (resp. symplectic, resp. Poisson) diffeomorphism of a presymplectic (resp., symplectic, resp. Poisson)manifold (M,ω) (resp. (M,Λ)) is a smoothdiffeomorphism f :M→Msuch that f∗ω=ω (resp. f∗Λ=Λ). Definition8. AsmoothvectorfieldXonapresymplectic (resp. symplectic, resp. Poisson)manifold (M,ω) (resp. (M,Λ)) is said tobeapresysmplectic (resp. symplectic, resp. Poisson)vectorfield ifL(X)ω=0 (resp. if L(X)Λ=0),whereL(X)denotes theLiederivativeof formsormutivectorfieldswith respect toX. Definition9. Let (M,ω)beapresymplectic or symplecticmanifold.AsmoothvectorfieldXonMissaid to beHamiltonian if there exists a smooth functionH :M→R, calledaHamiltonian forX, such that i(X)ω=−dH . NotanysmoothfunctiononapresymplecticmanifoldcanbeaHamiltonian. Definition10. Let (M,Λ) be aPoissonmanifold. A smoothvector fieldX onMis said to beHamiltonian if there exists a smooth function H ∈ C∞(M,R), called a Hamiltonian for X, such that X = Λ (dH). Anequivalentdefinition is that i(X)dg={H,g} for anyg∈C∞(M,R) , where{H,g}=Λ(dH,dg)denotes thePoissonbracket of the functionsHandg. OnasymplecticoraPoissonmanifold,anysmoothfunctioncanbeaHamiltonian. Proposition 3. AHamiltonian vector field on a presymplectic (resp. symplectic, resp. Poisson)manifold automatically is apresymplectic (resp. symplectic, resp. Poisson)vectorfield. Theproof of this result, which is easy, can be found in anybookon symplectic andPoisson geoemetry, forexample [8–10]. 5.2. LieAlgebrasandLieGroupsActions Definition11. Anactiononthe left (resp. anactiononthe right) of aLiegroupGonasmoothmanifoldMis a smoothmapΦ :G×M→M(resp. a smoothmapΨ :M×G→M)such that • for eachfixed g∈G, themapΦg : M→MdefinedbyΦg(x)=Φ(g,x) (resp. themapΨg : M→M definedbyΨg(x)=Ψ(x,g)) is a smoothdiffeomorphismofM, • Φe= idM(resp.Ψe= idM), ebeing theneutral elementofG, • for eachpair (g1,g2)∈G×G,Φg1◦Φg2 =Φg1g2 (resp.Ψg1◦Ψg2 =Ψg2g1). An action of a Lie algebraG on a smoothmanifoldM is aLie algebrasmorphism ofG into the Lie algebraA1(M)of smoothvectorfieldsonM, i.e., a linearmapψ :G→A1(M)whichassociates to eachX∈G a smoothvectorfieldψ(X)onMsuch that for eachpair (X,Y)∈G×G,ψ([X,Y])= [ψ(X),ψ(Y)]. Proposition 4. AnactionΨ, either on the left or on the right, of a Lie groupG on a smoothmanifold M, automaticallydeterminesanactionψof itsLie algebraG onthatmanifold,whichassociates to eachX∈G the vectorfieldψ(X)onM,oftendenotedbyXMandcalled the fundamentalvectorfieldonMassociated toX. It is definedby ψ(X)(x)=XM(x)= d ds ( Ψexp(sX)(x) ) ∣∣ s=0 , x∈M , 17
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics