Seite - 17 - in Differential Geometrical Theory of Statistics
Bild der Seite - 17 -
Text der Seite - 17 -
Entropy2016,18, 370
• a symplectic structure, determinedbyasymplectic formω, i.e., a2-formωwhich isbothclosed
(dω=0)andnondegenerate (kerω={0}),
• aPoissonstructure,determinedbyasmoothPoissonbivectorfieldΛsatisfying [Λ,Λ]=0.
Definition 7. A presymplectic (resp. symplectic, resp. Poisson) diffeomorphism of a presymplectic
(resp., symplectic, resp. Poisson)manifold (M,ω) (resp. (M,Λ)) is a smoothdiffeomorphism f :M→Msuch
that f∗ω=ω (resp. f∗Λ=Λ).
Definition8. AsmoothvectorfieldXonapresymplectic (resp. symplectic, resp. Poisson)manifold (M,ω)
(resp. (M,Λ)) is said tobeapresysmplectic (resp. symplectic, resp. Poisson)vectorfield ifL(X)ω=0 (resp. if
L(X)Λ=0),whereL(X)denotes theLiederivativeof formsormutivectorfieldswith respect toX.
Definition9. Let (M,ω)beapresymplectic or symplecticmanifold.AsmoothvectorfieldXonMissaid to
beHamiltonian if there exists a smooth functionH :M→R, calledaHamiltonian forX, such that
i(X)ω=−dH .
NotanysmoothfunctiononapresymplecticmanifoldcanbeaHamiltonian.
Definition10. Let (M,Λ) be aPoissonmanifold. A smoothvector fieldX onMis said to beHamiltonian
if there exists a smooth function H ∈ C∞(M,R), called a Hamiltonian for X, such that X = Λ (dH).
Anequivalentdefinition is that
i(X)dg={H,g} for anyg∈C∞(M,R) ,
where{H,g}=Λ(dH,dg)denotes thePoissonbracket of the functionsHandg.
OnasymplecticoraPoissonmanifold,anysmoothfunctioncanbeaHamiltonian.
Proposition 3. AHamiltonian vector field on a presymplectic (resp. symplectic, resp. Poisson)manifold
automatically is apresymplectic (resp. symplectic, resp. Poisson)vectorfield.
Theproof of this result, which is easy, can be found in anybookon symplectic andPoisson
geoemetry, forexample [8–10].
5.2. LieAlgebrasandLieGroupsActions
Definition11. Anactiononthe left (resp. anactiononthe right) of aLiegroupGonasmoothmanifoldMis
a smoothmapΦ :G×M→M(resp. a smoothmapΨ :M×G→M)such that
• for eachfixed g∈G, themapΦg : M→MdefinedbyΦg(x)=Φ(g,x) (resp. themapΨg : M→M
definedbyΨg(x)=Ψ(x,g)) is a smoothdiffeomorphismofM,
• Φe= idM(resp.Ψe= idM), ebeing theneutral elementofG,
• for eachpair (g1,g2)∈G×G,Φg1◦Φg2 =Φg1g2 (resp.Ψg1◦Ψg2 =Ψg2g1).
An action of a Lie algebraG on a smoothmanifoldM is aLie algebrasmorphism ofG into the Lie
algebraA1(M)of smoothvectorfieldsonM, i.e., a linearmapψ :G→A1(M)whichassociates to eachX∈G
a smoothvectorfieldψ(X)onMsuch that for eachpair (X,Y)∈G×G,ψ([X,Y])= [ψ(X),ψ(Y)].
Proposition 4. AnactionΨ, either on the left or on the right, of a Lie groupG on a smoothmanifold M,
automaticallydeterminesanactionψof itsLie algebraG onthatmanifold,whichassociates to eachX∈G the
vectorfieldψ(X)onM,oftendenotedbyXMandcalled the fundamentalvectorfieldonMassociated toX. It is
definedby
ψ(X)(x)=XM(x)= d
ds (
Ψexp(sX)(x) ) ∣∣
s=0 , x∈M ,
17
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik