Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 17 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 17 - in Differential Geometrical Theory of Statistics

Bild der Seite - 17 -

Bild der Seite - 17 - in Differential Geometrical Theory of Statistics

Text der Seite - 17 -

Entropy2016,18, 370 • a symplectic structure, determinedbyasymplectic formω, i.e., a2-formωwhich isbothclosed (dω=0)andnondegenerate (kerω={0}), • aPoissonstructure,determinedbyasmoothPoissonbivectorfieldΛsatisfying [Λ,Λ]=0. Definition 7. A presymplectic (resp. symplectic, resp. Poisson) diffeomorphism of a presymplectic (resp., symplectic, resp. Poisson)manifold (M,ω) (resp. (M,Λ)) is a smoothdiffeomorphism f :M→Msuch that f∗ω=ω (resp. f∗Λ=Λ). Definition8. AsmoothvectorfieldXonapresymplectic (resp. symplectic, resp. Poisson)manifold (M,ω) (resp. (M,Λ)) is said tobeapresysmplectic (resp. symplectic, resp. Poisson)vectorfield ifL(X)ω=0 (resp. if L(X)Λ=0),whereL(X)denotes theLiederivativeof formsormutivectorfieldswith respect toX. Definition9. Let (M,ω)beapresymplectic or symplecticmanifold.AsmoothvectorfieldXonMissaid to beHamiltonian if there exists a smooth functionH :M→R, calledaHamiltonian forX, such that i(X)ω=−dH . NotanysmoothfunctiononapresymplecticmanifoldcanbeaHamiltonian. Definition10. Let (M,Λ) be aPoissonmanifold. A smoothvector fieldX onMis said to beHamiltonian if there exists a smooth function H ∈ C∞(M,R), called a Hamiltonian for X, such that X = Λ (dH). Anequivalentdefinition is that i(X)dg={H,g} for anyg∈C∞(M,R) , where{H,g}=Λ(dH,dg)denotes thePoissonbracket of the functionsHandg. OnasymplecticoraPoissonmanifold,anysmoothfunctioncanbeaHamiltonian. Proposition 3. AHamiltonian vector field on a presymplectic (resp. symplectic, resp. Poisson)manifold automatically is apresymplectic (resp. symplectic, resp. Poisson)vectorfield. Theproof of this result, which is easy, can be found in anybookon symplectic andPoisson geoemetry, forexample [8–10]. 5.2. LieAlgebrasandLieGroupsActions Definition11. Anactiononthe left (resp. anactiononthe right) of aLiegroupGonasmoothmanifoldMis a smoothmapΦ :G×M→M(resp. a smoothmapΨ :M×G→M)such that • for eachfixed g∈G, themapΦg : M→MdefinedbyΦg(x)=Φ(g,x) (resp. themapΨg : M→M definedbyΨg(x)=Ψ(x,g)) is a smoothdiffeomorphismofM, • Φe= idM(resp.Ψe= idM), ebeing theneutral elementofG, • for eachpair (g1,g2)∈G×G,Φg1◦Φg2 =Φg1g2 (resp.Ψg1◦Ψg2 =Ψg2g1). An action of a Lie algebraG on a smoothmanifoldM is aLie algebrasmorphism ofG into the Lie algebraA1(M)of smoothvectorfieldsonM, i.e., a linearmapψ :G→A1(M)whichassociates to eachX∈G a smoothvectorfieldψ(X)onMsuch that for eachpair (X,Y)∈G×G,ψ([X,Y])= [ψ(X),ψ(Y)]. Proposition 4. AnactionΨ, either on the left or on the right, of a Lie groupG on a smoothmanifold M, automaticallydeterminesanactionψof itsLie algebraG onthatmanifold,whichassociates to eachX∈G the vectorfieldψ(X)onM,oftendenotedbyXMandcalled the fundamentalvectorfieldonMassociated toX. It is definedby ψ(X)(x)=XM(x)= d ds ( Ψexp(sX)(x) ) ∣∣ s=0 , x∈M , 17
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics