Page - 19 - in Differential Geometrical Theory of Statistics
Image of the Page - 19 -
Text of the Page - 19 -
Entropy2016,18, 370
Hamiltonians, respectively, the smooth functions f andgonthemanifoldM.The function f remainsconstant
oneach integral curveofXg if andonly if g remainsconstantoneach integral curveofXf.
Proof. Thefunction f is constantoneach integral curveofXg if andonly if i(Xg)df=0, sinceeach
integral curveofXg is connected.Wecanuse thePoissonbracket, evenwhenM isapresymplectic
manifold, since thePoissonbracket of twoHamiltoniansonapresymplecticmanifold still canbe
deļ¬ned. Sowecanwrite
i(Xg)df={g, f}=ā{f,g}=āi(Xf)dg .
Corollary2 (ofNoetherāsTheoreminHamiltonianFormalism). LetĻ :GāA1(M)beaHamiltonian
actionof aļ¬nite-dimensionalLie algebraG onapresymplectic or symplecticmanifold (M,Ļ), or onaPoisson
manifold (M,Ī), and let J : MāGā be amomentummapof this action. LetXH be aHamiltonianvector
ļ¬eld onMadmitting asHamiltonian a smooth functionH. If for eachXāGwehave i(Ļ(X))(dH) = 0,
themomentummap J remainsconstantoneach integral curveofXH.
Proof. Thisresult isobtainedbyapplyingTheorem5tothepairsofHamiltonianvectorļ¬eldsmade
byXH andeachvectorļ¬eldassociatedtoanelementofabasisofG.
5.5. SymplecticCocycles
Theorem6 (J.M.Souriau [14]). LetΦbe aHamiltonianaction (either on the left or on the right) of aLie
groupGonaconnected symplecticmanifold (M,Ļ)and let J :MāGā beamomentummapof this action.
There exists anafļ¬ne actionA(either on the left or on the right) of theLie groupGon thedualGā of itsLie
algebraG such that themomentummap J is equivariantwith respect to theactionsΦofGonMandAofGon
Gā, i.e., such that
Jā¦Ī¦g(x)=Ag⦠J(x) for all gāG , xāM .
TheactionAcanbewritten,withgāGandξāGā,ā§āØā©A(g,ξ)=Ad
ā
gā1(ξ)+Īø(g) ifΦ is anactiononthe left,
A(ξ,g)=Adāg(ξ)āĪø(gā1) ifΦ is anactiononthe right.
Proof. LetusassumethatΦ isanactiononthe left. Thefundamentalvectorļ¬eldXM associatedto
eachXāG isHamiltonian,with the function JX :MāR, givenby
JX(x)= ā©
J(x),X āŖ
, xāM ,
asHamiltonian. ForeachgāG thedirectimage(Φgā1)ā(XM)ofXMbythesymplecticdiffeomorphism
Φgā1 isHamiltonian,with JXā¦Ī¦g asHamiltonian.Aneasycalculationshowsthat thisvectorļ¬eld is
the fundamentalvectorļ¬eldassociatedtoAdgā1(X)āG. The function
x ā ā©J(x),Adgā1(X)āŖ= ā©Adāgā1ā¦J(x),XāŖ
is thereforeaHamiltonianfor thatvectorļ¬eld. Thesetwofunctionsdeļ¬nedontheconnectedmanifold
M,whichbothareadmissibleHamiltonians for thesameHamiltonianvectorļ¬eld,differonlybya
constant (whichmaydependongāG).Wecanset, foranygāG,
Īø(g)= Jā¦Ī¦g(x)āAdāgā1ā¦J(x)
andcheck that themapA : GĆGāāGādeļ¬ned in the statement is indeedanaction forwhich J
isequivariant.
Asimilarproof,withsomechangesofsigns,holdswhenΦ isanactionontheright.
19
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- FrƩdƩric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik