Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 19 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 19 - in Differential Geometrical Theory of Statistics

Image of the Page - 19 -

Image of the Page - 19 - in Differential Geometrical Theory of Statistics

Text of the Page - 19 -

Entropy2016,18, 370 Hamiltonians, respectively, the smooth functions f andgonthemanifoldM.The function f remainsconstant oneach integral curveofXg if andonly if g remainsconstantoneach integral curveofXf. Proof. Thefunction f is constantoneach integral curveofXg if andonly if i(Xg)df=0, sinceeach integral curveofXg is connected.Wecanuse thePoissonbracket, evenwhenM isapresymplectic manifold, since thePoissonbracket of twoHamiltoniansonapresymplecticmanifold still canbe defined. Sowecanwrite i(Xg)df={g, f}=āˆ’{f,g}=āˆ’i(Xf)dg . Corollary2 (ofNoether’sTheoreminHamiltonianFormalism). Letψ :G→A1(M)beaHamiltonian actionof afinite-dimensionalLie algebraG onapresymplectic or symplecticmanifold (M,ω), or onaPoisson manifold (M,Ī›), and let J : M→Gāˆ— be amomentummapof this action. LetXH be aHamiltonianvector field onMadmitting asHamiltonian a smooth functionH. If for eachX∈Gwehave i(ψ(X))(dH) = 0, themomentummap J remainsconstantoneach integral curveofXH. Proof. Thisresult isobtainedbyapplyingTheorem5tothepairsofHamiltonianvectorfieldsmade byXH andeachvectorfieldassociatedtoanelementofabasisofG. 5.5. SymplecticCocycles Theorem6 (J.M.Souriau [14]). LetΦbe aHamiltonianaction (either on the left or on the right) of aLie groupGonaconnected symplecticmanifold (M,ω)and let J :M→Gāˆ— beamomentummapof this action. There exists anaffine actionA(either on the left or on the right) of theLie groupGon thedualGāˆ— of itsLie algebraG such that themomentummap J is equivariantwith respect to theactionsΦofGonMandAofGon Gāˆ—, i.e., such that J◦Φg(x)=Agā—¦ J(x) for all g∈G , x∈M . TheactionAcanbewritten,withg∈Gandξ∈Gāˆ—,āŽ§āŽØāŽ©A(g,ξ)=Ad āˆ— gāˆ’1(ξ)+Īø(g) ifΦ is anactiononthe left, A(ξ,g)=Adāˆ—g(ξ)āˆ’Īø(gāˆ’1) ifΦ is anactiononthe right. Proof. LetusassumethatΦ isanactiononthe left. ThefundamentalvectorfieldXM associatedto eachX∈G isHamiltonian,with the function JX :M→R, givenby JX(x)= 〈 J(x),X 〉 , x∈M , asHamiltonian. Foreachg∈G thedirectimage(Φgāˆ’1)āˆ—(XM)ofXMbythesymplecticdiffeomorphism Φgāˆ’1 isHamiltonian,with JX◦Φg asHamiltonian.Aneasycalculationshowsthat thisvectorfield is the fundamentalvectorfieldassociatedtoAdgāˆ’1(X)∈G. The function x → 〈J(x),Adgāˆ’1(X)〉= 〈Adāˆ—gāˆ’1ā—¦J(x),X〉 is thereforeaHamiltonianfor thatvectorfield. Thesetwofunctionsdefinedontheconnectedmanifold M,whichbothareadmissibleHamiltonians for thesameHamiltonianvectorfield,differonlybya constant (whichmaydependong∈G).Wecanset, foranyg∈G, Īø(g)= J◦Φg(x)āˆ’Adāˆ—gāˆ’1ā—¦J(x) andcheck that themapA : GƗGāˆ—ā†’Gāˆ—defined in the statement is indeedanaction forwhich J isequivariant. Asimilarproof,withsomechangesofsigns,holdswhenΦ isanactionontheright. 19
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
FrƩdƩric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics