Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 19 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 19 - in Differential Geometrical Theory of Statistics

Bild der Seite - 19 -

Bild der Seite - 19 - in Differential Geometrical Theory of Statistics

Text der Seite - 19 -

Entropy2016,18, 370 Hamiltonians, respectively, the smooth functions f andgonthemanifoldM.The function f remainsconstant oneach integral curveofXg if andonly if g remainsconstantoneach integral curveofXf. Proof. Thefunction f is constantoneach integral curveofXg if andonly if i(Xg)df=0, sinceeach integral curveofXg is connected.Wecanuse thePoissonbracket, evenwhenM isapresymplectic manifold, since thePoissonbracket of twoHamiltoniansonapresymplecticmanifold still canbe deïŹned. Sowecanwrite i(Xg)df={g, f}=−{f,g}=−i(Xf)dg . Corollary2 (ofNoether’sTheoreminHamiltonianFormalism). Letψ :G→A1(M)beaHamiltonian actionof aïŹnite-dimensionalLie algebraG onapresymplectic or symplecticmanifold (M,ω), or onaPoisson manifold (M,Λ), and let J : M→G∗ be amomentummapof this action. LetXH be aHamiltonianvector ïŹeld onMadmitting asHamiltonian a smooth functionH. If for eachX∈Gwehave i(ψ(X))(dH) = 0, themomentummap J remainsconstantoneach integral curveofXH. Proof. Thisresult isobtainedbyapplyingTheorem5tothepairsofHamiltonianvectorïŹeldsmade byXH andeachvectorïŹeldassociatedtoanelementofabasisofG. 5.5. SymplecticCocycles Theorem6 (J.M.Souriau [14]). LetΊbe aHamiltonianaction (either on the left or on the right) of aLie groupGonaconnected symplecticmanifold (M,ω)and let J :M→G∗ beamomentummapof this action. There exists anafïŹne actionA(either on the left or on the right) of theLie groupGon thedualG∗ of itsLie algebraG such that themomentummap J is equivariantwith respect to theactionsΊofGonMandAofGon G∗, i.e., such that J◩Ωg(x)=Ag◩ J(x) for all g∈G , x∈M . TheactionAcanbewritten,withg∈GandΟ∈G∗,⎧⎚⎩A(g,Ο)=Ad ∗ g−1(Ο)+Ξ(g) ifΊ is anactiononthe left, A(Ο,g)=Ad∗g(Ο)−ξ(g−1) ifΊ is anactiononthe right. Proof. LetusassumethatΊ isanactiononthe left. ThefundamentalvectorïŹeldXM associatedto eachX∈G isHamiltonian,with the function JX :M→R, givenby JX(x)= 〈 J(x),X âŒȘ , x∈M , asHamiltonian. Foreachg∈G thedirectimage(Ίg−1)∗(XM)ofXMbythesymplecticdiffeomorphism Ίg−1 isHamiltonian,with JX◩Ωg asHamiltonian.Aneasycalculationshowsthat thisvectorïŹeld is the fundamentalvectorïŹeldassociatedtoAdg−1(X)∈G. The function x → 〈J(x),Adg−1(X)âŒȘ= 〈Ad∗g−1◩J(x),XâŒȘ is thereforeaHamiltonianfor thatvectorïŹeld. ThesetwofunctionsdeïŹnedontheconnectedmanifold M,whichbothareadmissibleHamiltonians for thesameHamiltonianvectorïŹeld,differonlybya constant (whichmaydependong∈G).Wecanset, foranyg∈G, Ξ(g)= J◩Ωg(x)−Ad∗g−1◩J(x) andcheck that themapA : G×G∗→G∗deïŹned in the statement is indeedanaction forwhich J isequivariant. Asimilarproof,withsomechangesofsigns,holdswhenΊ isanactionontheright. 19
zurĂŒck zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics