Seite - 19 - in Differential Geometrical Theory of Statistics
Bild der Seite - 19 -
Text der Seite - 19 -
Entropy2016,18, 370
Hamiltonians, respectively, the smooth functions f andgonthemanifoldM.The function f remainsconstant
oneach integral curveofXg if andonly if g remainsconstantoneach integral curveofXf.
Proof. Thefunction f is constantoneach integral curveofXg if andonly if i(Xg)df=0, sinceeach
integral curveofXg is connected.Wecanuse thePoissonbracket, evenwhenM isapresymplectic
manifold, since thePoissonbracket of twoHamiltoniansonapresymplecticmanifold still canbe
deïŹned. Sowecanwrite
i(Xg)df={g, f}=â{f,g}=âi(Xf)dg .
Corollary2 (ofNoetherâsTheoreminHamiltonianFormalism). LetÏ :GâA1(M)beaHamiltonian
actionof aïŹnite-dimensionalLie algebraG onapresymplectic or symplecticmanifold (M,Ï), or onaPoisson
manifold (M,Î), and let J : MâGâ be amomentummapof this action. LetXH be aHamiltonianvector
ïŹeld onMadmitting asHamiltonian a smooth functionH. If for eachXâGwehave i(Ï(X))(dH) = 0,
themomentummap J remainsconstantoneach integral curveofXH.
Proof. Thisresult isobtainedbyapplyingTheorem5tothepairsofHamiltonianvectorïŹeldsmade
byXH andeachvectorïŹeldassociatedtoanelementofabasisofG.
5.5. SymplecticCocycles
Theorem6 (J.M.Souriau [14]). LetΊbe aHamiltonianaction (either on the left or on the right) of aLie
groupGonaconnected symplecticmanifold (M,Ï)and let J :MâGâ beamomentummapof this action.
There exists anafïŹne actionA(either on the left or on the right) of theLie groupGon thedualGâ of itsLie
algebraG such that themomentummap J is equivariantwith respect to theactionsΊofGonMandAofGon
Gâ, i.e., such that
JâŠÎŠg(x)=Ag⊠J(x) for all gâG , xâM .
TheactionAcanbewritten,withgâGandΟâGâ,â§âšâ©A(g,Ο)=Ad
â
gâ1(Ο)+Ξ(g) ifΊ is anactiononthe left,
A(Ο,g)=Adâg(Ο)âΞ(gâ1) ifΊ is anactiononthe right.
Proof. LetusassumethatΊ isanactiononthe left. ThefundamentalvectorïŹeldXM associatedto
eachXâG isHamiltonian,with the function JX :MâR, givenby
JX(x)= â©
J(x),X âȘ
, xâM ,
asHamiltonian. ForeachgâG thedirectimage(Ίgâ1)â(XM)ofXMbythesymplecticdiffeomorphism
Ίgâ1 isHamiltonian,with JXâŠÎŠg asHamiltonian.Aneasycalculationshowsthat thisvectorïŹeld is
the fundamentalvectorïŹeldassociatedtoAdgâ1(X)âG. The function
x â â©J(x),Adgâ1(X)âȘ= â©Adâgâ1âŠJ(x),XâȘ
is thereforeaHamiltonianfor thatvectorïŹeld. ThesetwofunctionsdeïŹnedontheconnectedmanifold
M,whichbothareadmissibleHamiltonians for thesameHamiltonianvectorïŹeld,differonlybya
constant (whichmaydependongâG).Wecanset, foranygâG,
Ξ(g)= JâŠÎŠg(x)âAdâgâ1âŠJ(x)
andcheck that themapA : GĂGââGâdeïŹned in the statement is indeedanaction forwhich J
isequivariant.
Asimilarproof,withsomechangesofsigns,holdswhenΊ isanactionontheright.
19
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik