Page - 20 - in Differential Geometrical Theory of Statistics
Image of the Page - 20 -
Text of the Page - 20 -
Entropy2016,18, 370
Proposition6. UndertheassumptionsandwiththenotationsofTheorem6, themapθ :GâGâ isacocycleof
theLiegroupGwithvalues inGâ, for the coadjoint representation. Itmeans that it satisďŹes, forall g andhâG,
θ(gh)= θ(g)+Adâgâ1 (
θ(h) )
.
Morepreciselyθ is a symplectic cocycle. Itmeans that itsdifferentialTeθ :TeGâĄGâGâ at theneutral
element eâGcanbeconsideredasa skew-symmetricbilinear formonG:
Î(X,Y)= âŠ
Teθ(X),Y ⪠=ââŠTeθ(Y),X⪠.
The skew-symmetric bilinear formÎ is a symplectic cocycle of the Lie algebraG. It means that it is
skew-symmetric andsatisďŹes, for allX,YandZâG,
Î (
[X,Y],Z )
+Î (
[Y,Z],X )
+Î (
[Z,X],Y )
=0.
Proof. Thesepropertieseasilyfollowfromthefact thatwhenÎŚ isanactionontheleft, forgandhâG,
ÎŚgâŚÎŚh=ÎŚgh (andasimilarequalitywhenÎŚ is anactionontheright). The interestedreaderwill
ďŹndmoredetails in [9,12,14].
Proposition7. Stillunder theassumptionsandwith thenotationsofTheorem6, the composition lawwhich
associates to eachpair (f,g)of smoothreal-valued functionsonGâ the function{f,g}Î givenby
{f,g}Î(x)= âŠ
x, [df(x),dg(x)] âŞâÎ(df(x),dg(x)) , xâGâ ,
(G being identiďŹed with its bidual Gââ), determines a Poisson structure on Gâ, and the momentum map
J :MâGâ isaPoissonmap,MbeingendowedwiththePoissonstructureassociatedto itssymplecticstructure.
Proof. The fact that the bracket (f,g) â {f,g}Î onCâ(Gâ,R) is a Poisson bracketwas already
indicated inExample4. It canbeveriďŹedbyeasycalculations. The fact that J isaPoissonmapcanbe
provenbyďŹrst lookingat linear functionsonGâ, i.e., elements inG. ThereaderwillďŹndadetailed
proof in [12].
Remark11. Whenthemomentummap J is replacedbyanothermomentummap J1= J+Îź,whereÎźâGâ is
a constant, the symplecticLiegroupcocycleθ andthe symplecticLiealgebracocycleÎare replacedbyθ1 and
Î1, respectively,givenby
θ1(g)= θ(g)+ÎźâAdâgâ1(Îź) , gâG ,
Î1(X,Y)=Î(X,Y)+ âŠ
Îź, [X,Y] âŞ
, XandYâG .
These formulae showthatθ1âθ andÎ1âÎare symplectic coboundaries of theLiegroupGandtheLie
algebraG. Inotherwords, thecohomologyclassesof thecocyclesθ andÎonlydependontheHamiltonianaction
ÎŚofGonthe symplecticmanifold (M,Ď).
5.6. TheUseofSymmetries inHamiltonianMechanics
5.6.1. Symmetriesof thePhaseSpace
HamiltonianSymmetriesareoftenusedfor thesearchofsolutionsof theequationsofmotionof
mechanical systems. Thesymmetriesconsideredare thoseof thephase spaceof themechanical system.
Thisspace isveryoftena symplecticmanifold, either thecotangentbundle to theconďŹgurationspace
with its canonical symplectic structure,oramoregeneral symplecticmanifold. Sometimes,after some
simpliďŹcations, thephasespace isaPoissonmanifold.
20
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- FrĂŠdĂŠric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik