Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 20 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 20 - in Differential Geometrical Theory of Statistics

Image of the Page - 20 -

Image of the Page - 20 - in Differential Geometrical Theory of Statistics

Text of the Page - 20 -

Entropy2016,18, 370 Proposition6. UndertheassumptionsandwiththenotationsofTheorem6, themapθ :G→G∗ isacocycleof theLiegroupGwithvalues inG∗, for the coadjoint representation. Itmeans that it satisfies, forall g andh∈G, θ(gh)= θ(g)+Ad∗g−1 ( θ(h) ) . Morepreciselyθ is a symplectic cocycle. Itmeans that itsdifferentialTeθ :TeG≡G→G∗ at theneutral element e∈Gcanbeconsideredasa skew-symmetricbilinear formonG: Θ(X,Y)= 〈 Teθ(X),Y 〉 =−〈Teθ(Y),X〉 . The skew-symmetric bilinear formΘ is a symplectic cocycle of the Lie algebraG. It means that it is skew-symmetric andsatisfies, for allX,YandZ∈G, Θ ( [X,Y],Z ) +Θ ( [Y,Z],X ) +Θ ( [Z,X],Y ) =0. Proof. Thesepropertieseasilyfollowfromthefact thatwhenΦ isanactionontheleft, forgandh∈G, Φg◦Φh=Φgh (andasimilarequalitywhenΦ is anactionontheright). The interestedreaderwill findmoredetails in [9,12,14]. Proposition7. Stillunder theassumptionsandwith thenotationsofTheorem6, the composition lawwhich associates to eachpair (f,g)of smoothreal-valued functionsonG∗ the function{f,g}Θ givenby {f,g}Θ(x)= 〈 x, [df(x),dg(x)] 〉−Θ(df(x),dg(x)) , x∈G∗ , (G being identified with its bidual G∗∗), determines a Poisson structure on G∗, and the momentum map J :M→G∗ isaPoissonmap,MbeingendowedwiththePoissonstructureassociatedto itssymplecticstructure. Proof. The fact that the bracket (f,g) → {f,g}Θ onC∞(G∗,R) is a Poisson bracketwas already indicated inExample4. It canbeverifiedbyeasycalculations. The fact that J isaPoissonmapcanbe provenbyfirst lookingat linear functionsonG∗, i.e., elements inG. Thereaderwillfindadetailed proof in [12]. Remark11. Whenthemomentummap J is replacedbyanothermomentummap J1= J+μ,whereμ∈G∗ is a constant, the symplecticLiegroupcocycleθ andthe symplecticLiealgebracocycleΘare replacedbyθ1 and Θ1, respectively,givenby θ1(g)= θ(g)+μ−Ad∗g−1(μ) , g∈G , Θ1(X,Y)=Θ(X,Y)+ 〈 μ, [X,Y] 〉 , XandY∈G . These formulae showthatθ1−θ andΘ1−Θare symplectic coboundaries of theLiegroupGandtheLie algebraG. Inotherwords, thecohomologyclassesof thecocyclesθ andΘonlydependontheHamiltonianaction ΦofGonthe symplecticmanifold (M,ω). 5.6. TheUseofSymmetries inHamiltonianMechanics 5.6.1. Symmetriesof thePhaseSpace HamiltonianSymmetriesareoftenusedfor thesearchofsolutionsof theequationsofmotionof mechanical systems. Thesymmetriesconsideredare thoseof thephase spaceof themechanical system. Thisspace isveryoftena symplecticmanifold, either thecotangentbundle to theconfigurationspace with its canonical symplectic structure,oramoregeneral symplecticmanifold. Sometimes,after some simplifications, thephasespace isaPoissonmanifold. 20
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
FrĂŠdĂŠric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics