Seite - 20 - in Differential Geometrical Theory of Statistics
Bild der Seite - 20 -
Text der Seite - 20 -
Entropy2016,18, 370
Proposition6. UndertheassumptionsandwiththenotationsofTheorem6, themapθ :G→G∗ isacocycleof
theLiegroupGwithvalues inG∗, for the coadjoint representation. Itmeans that it satisfies, forall g andh∈G,
θ(gh)= θ(g)+Ad∗g−1 (
θ(h) )
.
Morepreciselyθ is a symplectic cocycle. Itmeans that itsdifferentialTeθ :TeG≡G→G∗ at theneutral
element e∈Gcanbeconsideredasa skew-symmetricbilinear formonG:
Θ(X,Y)= 〈
Teθ(X),Y 〉 =−〈Teθ(Y),X〉 .
The skew-symmetric bilinear formΘ is a symplectic cocycle of the Lie algebraG. It means that it is
skew-symmetric andsatisfies, for allX,YandZ∈G,
Θ (
[X,Y],Z )
+Θ (
[Y,Z],X )
+Θ (
[Z,X],Y )
=0.
Proof. Thesepropertieseasilyfollowfromthefact thatwhenΦ isanactionontheleft, forgandh∈G,
Φg◦Φh=Φgh (andasimilarequalitywhenΦ is anactionontheright). The interestedreaderwill
findmoredetails in [9,12,14].
Proposition7. Stillunder theassumptionsandwith thenotationsofTheorem6, the composition lawwhich
associates to eachpair (f,g)of smoothreal-valued functionsonG∗ the function{f,g}Θ givenby
{f,g}Θ(x)= 〈
x, [df(x),dg(x)] 〉−Θ(df(x),dg(x)) , x∈G∗ ,
(G being identified with its bidual G∗∗), determines a Poisson structure on G∗, and the momentum map
J :M→G∗ isaPoissonmap,MbeingendowedwiththePoissonstructureassociatedto itssymplecticstructure.
Proof. The fact that the bracket (f,g) → {f,g}Θ onC∞(G∗,R) is a Poisson bracketwas already
indicated inExample4. It canbeverifiedbyeasycalculations. The fact that J isaPoissonmapcanbe
provenbyfirst lookingat linear functionsonG∗, i.e., elements inG. Thereaderwillfindadetailed
proof in [12].
Remark11. Whenthemomentummap J is replacedbyanothermomentummap J1= J+μ,whereμ∈G∗ is
a constant, the symplecticLiegroupcocycleθ andthe symplecticLiealgebracocycleΘare replacedbyθ1 and
Θ1, respectively,givenby
θ1(g)= θ(g)+μ−Ad∗g−1(μ) , g∈G ,
Θ1(X,Y)=Θ(X,Y)+ 〈
μ, [X,Y] 〉
, XandY∈G .
These formulae showthatθ1−θ andΘ1−Θare symplectic coboundaries of theLiegroupGandtheLie
algebraG. Inotherwords, thecohomologyclassesof thecocyclesθ andΘonlydependontheHamiltonianaction
ΦofGonthe symplecticmanifold (M,ω).
5.6. TheUseofSymmetries inHamiltonianMechanics
5.6.1. Symmetriesof thePhaseSpace
HamiltonianSymmetriesareoftenusedfor thesearchofsolutionsof theequationsofmotionof
mechanical systems. Thesymmetriesconsideredare thoseof thephase spaceof themechanical system.
Thisspace isveryoftena symplecticmanifold, either thecotangentbundle to theconfigurationspace
with its canonical symplectic structure,oramoregeneral symplecticmanifold. Sometimes,after some
simplifications, thephasespace isaPoissonmanifold.
20
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik