Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 24 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 24 - in Differential Geometrical Theory of Statistics

Image of the Page - 24 -

Image of the Page - 24 - in Differential Geometrical Theory of Statistics

Text of the Page - 24 -

Entropy2016,18, 370 Theentropy s(ρ)ofaprobabilitydensityρhasveryremarkablevariationalpropertiesdiscussed in the followingdefinitionsandproposition. Definition17. Letρbe thedensityof a smoothstatistical state onasymplecticmanifold (M,ω). 1. For each function f defined on M, taking its values inR or in some finite-dimensional vector space, such that the integral on the righthandsideof the equality Eρ(f)= ∫ M fρdλω converges, thevalueEρ(f)of that integral is called themeanvalueof f with respect toρ. 2. Let f be a smooth function on M, taking its values inR or in some finite-dimensional vector space, satisfying theproperties statedabove.Asmooth infinitesimalvariationofρwithfixedmeanvalueof f is a smoothmap,definedontheproduct ]−ε,ε[×M,withvalues inR+,where ε>0, (τ,z) → ρ(τ,z) , τ∈]−ε,ε[, z∈M , such that • forτ=0andanyz∈M,ρ(0,z)= ρ(z), • for eachτ∈]−ε,ε[ , z → ρτ(z)= ρ(τ,z) is a smoothprobabilitydensityonMsuch that Eρτ(f)= ∫ M ρτ fdλω=Eρ(f) . 3. The entropy function s is said to be stationary at the probability density ρ with respect to smooth infinitesimal variations of ρ with fixed mean value of f, if for any smooth infinitesimal variation (τ,z) → ρ(τ,z)ofρwithfixedmeanvalueof f ds(ρτ) dτ ∣∣∣ τ=0 =0. Proposition 8. Let H : M→R be a smoothHamiltonian on a symplecticmanifold (M,ω) and ρ be the densityofasmoothstatistical stateonMsuchthat the integraldefiningthemeanvalueEρ(H)ofHwithrespect toρ converges. The entropy functions is stationaryatρwithrespect to smooth infinitesimalvariationsofρwith fixedmeanvalueofH, if andonly if there exists a real b∈R such that, for all z∈M, ρ(z)= 1 P(b) exp (−bH(z)) , with P(b)= ∫ M exp(−bH)dλω . Proof. Letτ → ρτbeasmoothinfinitesimalvariationofρwithfixedmeanvalueofH. Since ∫ M ρτdλω and ∫ M ρτHdλω donotdependonτ, it satisfies, forallτ∈]−ε,ε[ ,∫ M ∂ρ(τ,z) ∂τ dλω(z)=0, ∫ M ∂ρ(τ,z) ∂τ H(z)dλω(z)=0. Moreoveraneasycalculation leads to ds(ρτ) dτ ∣∣∣ τ=0 =− ∫ M ∂ρ(τ,z) ∂τ ∣∣∣ τ=0 (1+ log ( ρ(z) ) dλω(z) . Awellknownresult incalculusofvariationsshowsthat theentropyfunction s is stationaryatρ withrespect tosmooth infinitesimalvariationsofρwithfixedmeanvalueofH, if andonly if there exist tworealconstants aandb, calledLagrangemultipliers, suchthat, forallz∈M, 1+ log(ρ)+a+bH=0, 24
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics