Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 24 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 24 - in Differential Geometrical Theory of Statistics

Bild der Seite - 24 -

Bild der Seite - 24 - in Differential Geometrical Theory of Statistics

Text der Seite - 24 -

Entropy2016,18, 370 Theentropy s(ρ)ofaprobabilitydensityρhasveryremarkablevariationalpropertiesdiscussed in the followingdefinitionsandproposition. Definition17. Letρbe thedensityof a smoothstatistical state onasymplecticmanifold (M,ω). 1. For each function f defined on M, taking its values inR or in some finite-dimensional vector space, such that the integral on the righthandsideof the equality Eρ(f)= ∫ M fρdλω converges, thevalueEρ(f)of that integral is called themeanvalueof f with respect toρ. 2. Let f be a smooth function on M, taking its values inR or in some finite-dimensional vector space, satisfying theproperties statedabove.Asmooth infinitesimalvariationofρwithfixedmeanvalueof f is a smoothmap,definedontheproduct ]−ε,ε[×M,withvalues inR+,where ε>0, (τ,z) → ρ(τ,z) , τ∈]−ε,ε[, z∈M , such that • forτ=0andanyz∈M,ρ(0,z)= ρ(z), • for eachτ∈]−ε,ε[ , z → ρτ(z)= ρ(τ,z) is a smoothprobabilitydensityonMsuch that Eρτ(f)= ∫ M ρτ fdλω=Eρ(f) . 3. The entropy function s is said to be stationary at the probability density ρ with respect to smooth infinitesimal variations of ρ with fixed mean value of f, if for any smooth infinitesimal variation (τ,z) → ρ(τ,z)ofρwithfixedmeanvalueof f ds(ρτ) dτ ∣∣∣ τ=0 =0. Proposition 8. Let H : M→R be a smoothHamiltonian on a symplecticmanifold (M,ω) and ρ be the densityofasmoothstatistical stateonMsuchthat the integraldefiningthemeanvalueEρ(H)ofHwithrespect toρ converges. The entropy functions is stationaryatρwithrespect to smooth infinitesimalvariationsofρwith fixedmeanvalueofH, if andonly if there exists a real b∈R such that, for all z∈M, ρ(z)= 1 P(b) exp (−bH(z)) , with P(b)= ∫ M exp(−bH)dλω . Proof. Letτ → ρτbeasmoothinfinitesimalvariationofρwithfixedmeanvalueofH. Since ∫ M ρτdλω and ∫ M ρτHdλω donotdependonτ, it satisfies, forallτ∈]−ε,ε[ ,∫ M ∂ρ(τ,z) ∂τ dλω(z)=0, ∫ M ∂ρ(τ,z) ∂τ H(z)dλω(z)=0. Moreoveraneasycalculation leads to ds(ρτ) dτ ∣∣∣ τ=0 =− ∫ M ∂ρ(τ,z) ∂τ ∣∣∣ τ=0 (1+ log ( ρ(z) ) dλω(z) . Awellknownresult incalculusofvariationsshowsthat theentropyfunction s is stationaryatρ withrespect tosmooth infinitesimalvariationsofρwithfixedmeanvalueofH, if andonly if there exist tworealconstants aandb, calledLagrangemultipliers, suchthat, forallz∈M, 1+ log(ρ)+a+bH=0, 24
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics