Page - 25 - in Differential Geometrical Theory of Statistics
Image of the Page - 25 -
Text of the Page - 25 -
Entropy2016,18, 370
which leads to
ρ= exp(−1−a−bH) .
Bywriting that ∫
M ρdλω=1,wesee that a isdeterminedbyb:
exp(1+a)=P(b)= ∫
M exp(−bH)dλω .
Definition18. LetH :M→RbeasmoothHamiltonianonasymplecticmanifold (M,ω). For eachb∈R
such that the integral on the right sideof the equality
P(b)= ∫
M exp(−bH)dλω
converges, the smoothprobabilitymeasureonMwithdensity (with respect to theLiouvillemeasure)
ρ(b)= 1
P(b) exp (−bH)
is called theGibbs statistical state associated tob. The functionP : b →P(b) is called thepartition function.
Thefollowingpropositionshowsthat theentropyfunction,notonly isstationaryatanyGibbs
statistical state,but inacertainsenseattainsat that stateastrictmaximum.
Proposition9. LetH : M→R be a smoothHamiltonian ona symplecticmanifold (M,ω) and b∈R be
such that the integraldefining thevalueP(b)of thepartition functionPatb converges. Let
ρb= 1
P(b) exp(−bH)
be the probability density of theGibbs statistical state associated to b. We assume that theHamiltonian H
is bounded by below, i.e., that there exists a constant m such that m ≤ H(z) for any z ∈ M. Then the
integraldefining
Eρb(H)= ∫
M ρbHdλω
converges. Foranyother smoothprobabilitydensityρ1 such that
Eρ1(H)=Eρb(H) ,
wehave
s(ρ1)≤ s(ρb) ,
and the equality s(ρ1)= s(ρb)holds if andonly ifρ1= ρb.
Proof. Sincem≤H, the functionρbexp(−bH) satisfies0≤ ρbexp(−bH)≤ exp(−mb)ρb, therefore
is integrable on M. Let ρ1 be any smooth probability density on M satisfying Eρ1(H) = Eρb(H).
The functiondefinedonR+
x → h(x)= ⎧⎪⎨⎪⎩x log (
1
x )
ifx>0
0 ifx=0
beingconvex, itsgraphisbelowthe tangentatanyof itspoints (
x0,h(x0) )
.Wethereforehave, forall
x>0andx0>0,
h(x)≤ h(x0)−(1+ logx0)(x−x0)= x0−x(1+ logx0) .
25
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik