Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 25 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 25 - in Differential Geometrical Theory of Statistics

Image of the Page - 25 -

Image of the Page - 25 - in Differential Geometrical Theory of Statistics

Text of the Page - 25 -

Entropy2016,18, 370 which leads to ρ= exp(−1−a−bH) . Bywriting that ∫ M ρdλω=1,wesee that a isdeterminedbyb: exp(1+a)=P(b)= ∫ M exp(−bH)dλω . Definition18. LetH :M→RbeasmoothHamiltonianonasymplecticmanifold (M,ω). For eachb∈R such that the integral on the right sideof the equality P(b)= ∫ M exp(−bH)dλω converges, the smoothprobabilitymeasureonMwithdensity (with respect to theLiouvillemeasure) ρ(b)= 1 P(b) exp (−bH) is called theGibbs statistical state associated tob. The functionP : b →P(b) is called thepartition function. Thefollowingpropositionshowsthat theentropyfunction,notonly isstationaryatanyGibbs statistical state,but inacertainsenseattainsat that stateastrictmaximum. Proposition9. LetH : M→R be a smoothHamiltonian ona symplecticmanifold (M,ω) and b∈R be such that the integraldefining thevalueP(b)of thepartition functionPatb converges. Let ρb= 1 P(b) exp(−bH) be the probability density of theGibbs statistical state associated to b. We assume that theHamiltonian H is bounded by below, i.e., that there exists a constant m such that m ≤ H(z) for any z ∈ M. Then the integraldefining Eρb(H)= ∫ M ρbHdλω converges. Foranyother smoothprobabilitydensityρ1 such that Eρ1(H)=Eρb(H) , wehave s(ρ1)≤ s(ρb) , and the equality s(ρ1)= s(ρb)holds if andonly ifρ1= ρb. Proof. Sincem≤H, the functionρbexp(−bH) satisfies0≤ ρbexp(−bH)≤ exp(−mb)ρb, therefore is integrable on M. Let ρ1 be any smooth probability density on M satisfying Eρ1(H) = Eρb(H). The functiondefinedonR+ x → h(x)= ⎧⎪⎨⎪⎩x log ( 1 x ) ifx>0 0 ifx=0 beingconvex, itsgraphisbelowthe tangentatanyof itspoints ( x0,h(x0) ) .Wethereforehave, forall x>0andx0>0, h(x)≤ h(x0)−(1+ logx0)(x−x0)= x0−x(1+ logx0) . 25
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics