Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 25 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 25 - in Differential Geometrical Theory of Statistics

Bild der Seite - 25 -

Bild der Seite - 25 - in Differential Geometrical Theory of Statistics

Text der Seite - 25 -

Entropy2016,18, 370 which leads to ρ= exp(−1−a−bH) . Bywriting that ∫ M ρdλω=1,wesee that a isdeterminedbyb: exp(1+a)=P(b)= ∫ M exp(−bH)dλω . DeïŹnition18. LetH :M→RbeasmoothHamiltonianonasymplecticmanifold (M,ω). For eachb∈R such that the integral on the right sideof the equality P(b)= ∫ M exp(−bH)dλω converges, the smoothprobabilitymeasureonMwithdensity (with respect to theLiouvillemeasure) ρ(b)= 1 P(b) exp (−bH) is called theGibbs statistical state associated tob. The functionP : b →P(b) is called thepartition function. Thefollowingpropositionshowsthat theentropyfunction,notonly isstationaryatanyGibbs statistical state,but inacertainsenseattainsat that stateastrictmaximum. Proposition9. LetH : M→R be a smoothHamiltonian ona symplecticmanifold (M,ω) and b∈R be such that the integraldeïŹning thevalueP(b)of thepartition functionPatb converges. Let ρb= 1 P(b) exp(−bH) be the probability density of theGibbs statistical state associated to b. We assume that theHamiltonian H is bounded by below, i.e., that there exists a constant m such that m ≀ H(z) for any z ∈ M. Then the integraldeïŹning Eρb(H)= ∫ M ρbHdλω converges. Foranyother smoothprobabilitydensityρ1 such that Eρ1(H)=Eρb(H) , wehave s(ρ1)≀ s(ρb) , and the equality s(ρ1)= s(ρb)holds if andonly ifρ1= ρb. Proof. Sincem≀H, the functionρbexp(−bH) satisïŹes0≀ ρbexp(−bH)≀ exp(−mb)ρb, therefore is integrable on M. Let ρ1 be any smooth probability density on M satisfying Eρ1(H) = Eρb(H). The functiondeïŹnedonR+ x → h(x)= ⎧âŽȘ⎚âŽȘ⎩x log ( 1 x ) ifx>0 0 ifx=0 beingconvex, itsgraphisbelowthe tangentatanyof itspoints ( x0,h(x0) ) .Wethereforehave, forall x>0andx0>0, h(x)≀ h(x0)−(1+ logx0)(x−x0)= x0−x(1+ logx0) . 25
zurĂŒck zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics