Seite - 25 - in Differential Geometrical Theory of Statistics
Bild der Seite - 25 -
Text der Seite - 25 -
Entropy2016,18, 370
which leads to
Ï= exp(â1âaâbH) .
Bywriting that â«
M ÏdλÏ=1,wesee that a isdeterminedbyb:
exp(1+a)=P(b)= â«
M exp(âbH)dÎ»Ï .
DeïŹnition18. LetH :MâRbeasmoothHamiltonianonasymplecticmanifold (M,Ï). For eachbâR
such that the integral on the right sideof the equality
P(b)= â«
M exp(âbH)dλÏ
converges, the smoothprobabilitymeasureonMwithdensity (with respect to theLiouvillemeasure)
Ï(b)= 1
P(b) exp (âbH)
is called theGibbs statistical state associated tob. The functionP : b âP(b) is called thepartition function.
Thefollowingpropositionshowsthat theentropyfunction,notonly isstationaryatanyGibbs
statistical state,but inacertainsenseattainsat that stateastrictmaximum.
Proposition9. LetH : MâR be a smoothHamiltonian ona symplecticmanifold (M,Ï) and bâR be
such that the integraldeïŹning thevalueP(b)of thepartition functionPatb converges. Let
Ïb= 1
P(b) exp(âbH)
be the probability density of theGibbs statistical state associated to b. We assume that theHamiltonian H
is bounded by below, i.e., that there exists a constant m such that m †H(z) for any z â M. Then the
integraldeïŹning
EÏb(H)= â«
M ÏbHdλÏ
converges. Foranyother smoothprobabilitydensityÏ1 such that
EÏ1(H)=EÏb(H) ,
wehave
s(Ï1)†s(Ïb) ,
and the equality s(Ï1)= s(Ïb)holds if andonly ifÏ1= Ïb.
Proof. Sincemâ€H, the functionÏbexp(âbH) satisïŹes0†Ïbexp(âbH)†exp(âmb)Ïb, therefore
is integrable on M. Let Ï1 be any smooth probability density on M satisfying EÏ1(H) = EÏb(H).
The functiondeïŹnedonR+
x â h(x)= â§âȘâšâȘâ©x log (
1
x )
ifx>0
0 ifx=0
beingconvex, itsgraphisbelowthe tangentatanyof itspoints (
x0,h(x0) )
.Wethereforehave, forall
x>0andx0>0,
h(x)†h(x0)â(1+ logx0)(xâx0)= x0âx(1+ logx0) .
25
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik