Page - 27 - in Differential Geometrical Theory of Statistics
Image of the Page - 27 -
Text of the Page - 27 -
Entropy2016,18, 370
6.2. ThermodynamicEquilibria andThermodynamicFunctions
6.2.1.AssumptionsMadein thisSection.
Any Hamiltonian H deļ¬ned on a symplectic manifold (M,Ļ) considered in this section
will be assumed to be smooth, bounded by below and such that for any real b > 0, each one
of the three functions, deļ¬ned on M, z ā exp(ābH(z)), z ā ā£ā£H(z)ā£ā£exp(ābH(z)) and z
ā(
H(z) )2exp(ābH(z)) iseverywheresmaller thansomefunctiondeļ¬nedonM integrablewithrespect
to theLiouvillemeasureĪ»Ļ. The integralswhichdeļ¬ne
P(b)= ā«
M exp(ābH)dĪ»Ļ and EĻb(H)= ā«
M Hexp(ābH)dĪ»Ļ
thereforeconverge.
Proposition11. LetHbeaHamiltoniandeļ¬nedonasymplecticmanifold (M,Ļ) satisfying theassumptions
indicated inSection6.2.1. Foranyreal b>0 let
P(b)= ā«
M exp(ābH)dĪ»Ļ and Ļb= 1P(b) exp(ābH)
be thevalueat bof thepartition functionPandtheprobabilitydensityof theGibbs statistical stateassociated
tob, and
E(b)=EĻb(H)= 1
P(b) ā«
M Hexp(ābH)dĪ»Ļ
be themeanvalueofHwithrespect to theprobabilitydensityĻb. Theļ¬rst andsecondderivativeswith respect to
b of thepartition functionPexist, are continuous functionsof bgivenby
dP(b)
db =āP(b)E(b) , d
2P(b)
db2 = ā«
M H2exp(ābH)dĪ»Ļ=P(b)EĻb(H2) .
Thederivativewith respect to b of the functionEexists and is a continuous functionof bgivenby
dE(b)
db =ā 1
P(b) ā«
M ( HāEĻb(H) )2dĪ»Ļ=āEĻb((HāEĻb(H))2) .
LetS(b)be the entropy s(Ļb)of theGibbs statistical state associated to b. The functionScanbe expressed
in termsofPandEas
S(b)= log (
P(b) )
+bE(b) .
Itsderivativewith respect to b exists and is a continuous functionof bgivenby
dS(b)
db = b dE(b)
db .
Proof. UsingtheassumptionsSection6.2.1,wesee that the functionsb āP(b)andb āEĻb(H)=E(b),
deļ¬nedbyintegralsonM,haveaderivativewithrespect tobwhich iscontinuousandwhichcanbe
calculatedbyderivationunder the sign ā«
M . The indicated results easily follow, ifweobserve that
for any function f on M such that EĻb(f) and EĻb(f2) exist, we have the formula,well known in
Probability theory,
EĻb(f2)ā (EĻb(f))2=EĻb((fāEĻb(f))2) .
6.2.2. PhysicalMeaningof the IntroducedFunctions
Let us consider aphysical system, for example agas contained in avessel boundedby rigid,
thermally insulatedwalls, at rest in aGalilean reference frame. Weassume that its evolution can
27
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- FrƩdƩric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik