Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 27 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 27 - in Differential Geometrical Theory of Statistics

Bild der Seite - 27 -

Bild der Seite - 27 - in Differential Geometrical Theory of Statistics

Text der Seite - 27 -

Entropy2016,18, 370 6.2. ThermodynamicEquilibria andThermodynamicFunctions 6.2.1.AssumptionsMadein thisSection. Any Hamiltonian H defined on a symplectic manifold (M,ω) considered in this section will be assumed to be smooth, bounded by below and such that for any real b > 0, each one of the three functions, defined on M, z → exp(−bH(z)), z → ∣∣H(z)∣∣exp(−bH(z)) and z →( H(z) )2exp(−bH(z)) iseverywheresmaller thansomefunctiondefinedonM integrablewithrespect to theLiouvillemeasureλω. The integralswhichdefine P(b)= ∫ M exp(−bH)dλω and Eρb(H)= ∫ M Hexp(−bH)dλω thereforeconverge. Proposition11. LetHbeaHamiltoniandefinedonasymplecticmanifold (M,ω) satisfying theassumptions indicated inSection6.2.1. Foranyreal b>0 let P(b)= ∫ M exp(−bH)dλω and ρb= 1P(b) exp(−bH) be thevalueat bof thepartition functionPandtheprobabilitydensityof theGibbs statistical stateassociated tob, and E(b)=Eρb(H)= 1 P(b) ∫ M Hexp(−bH)dλω be themeanvalueofHwithrespect to theprobabilitydensityρb. Thefirst andsecondderivativeswith respect to b of thepartition functionPexist, are continuous functionsof bgivenby dP(b) db =−P(b)E(b) , d 2P(b) db2 = ∫ M H2exp(−bH)dλω=P(b)Eρb(H2) . Thederivativewith respect to b of the functionEexists and is a continuous functionof bgivenby dE(b) db =− 1 P(b) ∫ M ( H−Eρb(H) )2dλω=−Eρb((H−Eρb(H))2) . LetS(b)be the entropy s(ρb)of theGibbs statistical state associated to b. The functionScanbe expressed in termsofPandEas S(b)= log ( P(b) ) +bE(b) . Itsderivativewith respect to b exists and is a continuous functionof bgivenby dS(b) db = b dE(b) db . Proof. UsingtheassumptionsSection6.2.1,wesee that the functionsb →P(b)andb →Eρb(H)=E(b), definedbyintegralsonM,haveaderivativewithrespect tobwhich iscontinuousandwhichcanbe calculatedbyderivationunder the sign ∫ M . The indicated results easily follow, ifweobserve that for any function f on M such that Eρb(f) and Eρb(f2) exist, we have the formula,well known in Probability theory, Eρb(f2)− (Eρb(f))2=Eρb((f−Eρb(f))2) . 6.2.2. PhysicalMeaningof the IntroducedFunctions Let us consider aphysical system, for example agas contained in avessel boundedby rigid, thermally insulatedwalls, at rest in aGalilean reference frame. Weassume that its evolution can 27
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics