Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 28 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 28 - in Differential Geometrical Theory of Statistics

Image of the Page - 28 -

Image of the Page - 28 - in Differential Geometrical Theory of Statistics

Text of the Page - 28 -

Entropy2016,18, 370 bemathematicallydescribedbymeansof aHamiltonian systemona symplecticmanifold (M,ω) whoseHamiltonianH satisfies theassumptionsSection6.2.1. Forphysicists, aGibbsstatistical state, i.e., aprobabilitymeasureofdensity ρb = 1 P(b) exp(−bH)onM, is a thermodynamic equilibriumof thephysical system.Thesetofpossible thermodynamicequilibriaof thesystemis therefore indexed by a real parameter b > 0. The following argumentwill showwhat physicalmeaning can have thatparameter. Let us consider two similar physical systems,mathematicallydescribedby twoHamiltonian systems,ofHamiltoniansH1 onthesymplecticmanifold (M1,ω1)andH2 onthesymplecticmanifold (M2,ω2). We first assume that they are independent and both in thermodynamic equilibrium, withdifferentvaluesb1 andb2 of theparameterb.WedenotebyE1(b1)andE2(b2) themeanvalues ofH1 on themanifoldM1withrespect to theGibbsstateofdensityρ1,b1 andofH2 on themanifold M2withrespect to theGibbsstateofdensityρ2,b2.Weassumenowthat the twosystemsarecoupled in awayallowing an exchangeof energy. For example, the twovessels containing the twogases canbeseparatedbyawall allowingaheat transferbetween them. Coupled together, theymakea newphysical system,mathematicallydescribedbyaHamiltoniansystemonthesymplecticmanifold (M1×M2,p∗1ω1+ p∗2ω2), where p1 : M1×M2 → M1 and p2 : M1×M2 → M2 are the canonical projections. TheHamiltonianofthisnewsystemcanbemadeasclosetoH1◦p1+H2◦p2asonewishes, bymakingverysmall thecouplingbetweenthe twosystems. Themeanvalueof theHamiltonianof thenewsystemis thereforeveryclose toE1(b1)+E2(b2).Whenthe total systemwill reachastateof thermodynamicequilibrium, theprobabilitydensitiesof theGibbsstatesof its twoparts,ρ1,b′ onM1 andρ2,b′ onM2willbe indexedbythesamerealnumberb′>0,whichmustbesuchthat E1(b′)+E2(b′)=E1(b1)+E2(b2) . ByProposition11,wehave, forallb>0, dE1(b) db ≤0, dE2(b) db ≤0. Thereforeb′must liebetweenb1 andb2. If, forexample,b1< b2,wesee thatE1(b′)≤E1(b1)and E2(b′)≥E2(b2). Inorder toreachastateof thermodynamicequilibrium,energymustbe transferred from thepart of the systemwhere bhas the smallest value, towards thepart of the systemwhere b has the highest value, until, at thermodynamic equilibrium, b has the same value everywhere. Everydayexperienceshowsthat thermalenergyflowsfrompartsofasystemwhere the temperature ishigher, towardspartswhere it is lower. For this reasonphysicists consider the realvariable bas awaytoappreciate the temperatureofaphysical systeminastateof thermodynamicequilibrium. Moreprecisely, theystate that b= 1 kT whereT is theabsolute temperatureandkaconstantdependingonthechoiceofunitsofenergyand temperature, calledBoltzmann’s constant in honour of the greatAustrian scientist LudwigEduard Boltzmann(1844–1906). For a physical system mathematically described by a Hamiltonian system on a symplectic manifold (M,ω),withHasHamiltonian, inastateof thermodynamicequilibrium,E(b)andS(b)are the internal energyandthe entropyof thesystem. 6.2.3. TowardsThermodynamicEquilibrium Everydayexperienceshowsthataphysical system,whensubmitted toexternal conditionswhich remainunchangedforasufficientlylongtime,veryoftenreachesastateofthermodynamicequilibrium. Atfirst look, it seemsthatLagrangianorHamiltoniansystemswith time-independentLagrangiansor Hamiltonianscannotexhibitasimilarbehaviour. Letus indeedconsideramechanical systemwhose 28
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics