Seite - 28 - in Differential Geometrical Theory of Statistics
Bild der Seite - 28 -
Text der Seite - 28 -
Entropy2016,18, 370
bemathematicallydescribedbymeansof aHamiltonian systemona symplecticmanifold (M,ω)
whoseHamiltonianH satisfies theassumptionsSection6.2.1. Forphysicists, aGibbsstatistical state,
i.e., aprobabilitymeasureofdensity ρb = 1
P(b) exp(−bH)onM, is a thermodynamic equilibriumof
thephysical system.Thesetofpossible thermodynamicequilibriaof thesystemis therefore indexed
by a real parameter b > 0. The following argumentwill showwhat physicalmeaning can have
thatparameter.
Let us consider two similar physical systems,mathematicallydescribedby twoHamiltonian
systems,ofHamiltoniansH1 onthesymplecticmanifold (M1,ω1)andH2 onthesymplecticmanifold
(M2,ω2). We first assume that they are independent and both in thermodynamic equilibrium,
withdifferentvaluesb1 andb2 of theparameterb.WedenotebyE1(b1)andE2(b2) themeanvalues
ofH1 on themanifoldM1withrespect to theGibbsstateofdensityρ1,b1 andofH2 on themanifold
M2withrespect to theGibbsstateofdensityρ2,b2.Weassumenowthat the twosystemsarecoupled
in awayallowing an exchangeof energy. For example, the twovessels containing the twogases
canbeseparatedbyawall allowingaheat transferbetween them. Coupled together, theymakea
newphysical system,mathematicallydescribedbyaHamiltoniansystemonthesymplecticmanifold
(M1×M2,p∗1ω1+ p∗2ω2), where p1 : M1×M2 → M1 and p2 : M1×M2 → M2 are the canonical
projections. TheHamiltonianofthisnewsystemcanbemadeasclosetoH1◦p1+H2◦p2asonewishes,
bymakingverysmall thecouplingbetweenthe twosystems. Themeanvalueof theHamiltonianof
thenewsystemis thereforeveryclose toE1(b1)+E2(b2).Whenthe total systemwill reachastateof
thermodynamicequilibrium, theprobabilitydensitiesof theGibbsstatesof its twoparts,ρ1,b′ onM1
andρ2,b′ onM2willbe indexedbythesamerealnumberb′>0,whichmustbesuchthat
E1(b′)+E2(b′)=E1(b1)+E2(b2) .
ByProposition11,wehave, forallb>0,
dE1(b)
db ≤0, dE2(b)
db ≤0.
Thereforeb′must liebetweenb1 andb2. If, forexample,b1< b2,wesee thatE1(b′)≤E1(b1)and
E2(b′)≥E2(b2). Inorder toreachastateof thermodynamicequilibrium,energymustbe transferred
from thepart of the systemwhere bhas the smallest value, towards thepart of the systemwhere
b has the highest value, until, at thermodynamic equilibrium, b has the same value everywhere.
Everydayexperienceshowsthat thermalenergyflowsfrompartsofasystemwhere the temperature
ishigher, towardspartswhere it is lower. For this reasonphysicists consider the realvariable bas
awaytoappreciate the temperatureofaphysical systeminastateof thermodynamicequilibrium.
Moreprecisely, theystate that
b= 1
kT
whereT is theabsolute temperatureandkaconstantdependingonthechoiceofunitsofenergyand
temperature, calledBoltzmann’s constant in honour of the greatAustrian scientist LudwigEduard
Boltzmann(1844–1906).
For a physical system mathematically described by a Hamiltonian system on a symplectic
manifold (M,ω),withHasHamiltonian, inastateof thermodynamicequilibrium,E(b)andS(b)are
the internal energyandthe entropyof thesystem.
6.2.3. TowardsThermodynamicEquilibrium
Everydayexperienceshowsthataphysical system,whensubmitted toexternal conditionswhich
remainunchangedforasufficientlylongtime,veryoftenreachesastateofthermodynamicequilibrium.
Atfirst look, it seemsthatLagrangianorHamiltoniansystemswith time-independentLagrangiansor
Hamiltonianscannotexhibitasimilarbehaviour. Letus indeedconsideramechanical systemwhose
28
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik