Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 30 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 30 - in Differential Geometrical Theory of Statistics

Image of the Page - 30 -

Image of the Page - 30 - in Differential Geometrical Theory of Statistics

Text of the Page - 30 -

Entropy2016,18, 370 Interactionsof theparticleswith thewallsof thevessel are essential for allowing themotions ofparticles to remainconïŹned. Interactionsbetweenparticlesareessential toallowtheexchanges between themofenergyandmomentum,whichplayan importantpart in theevolutionwith time of thestatistical stateof thesystem. However it appears thatwhile these termsarevery important todeterminethesystem’sevolutionwith time, theycanbeneglected,whenthegas isdiluteenough, ifweonlywanttodeterminetheïŹnalstatisticalstateof thesystem,onceathermodynamicequilibrium isestablished. TheHamiltonianusedwill thereforebe H= N ∑ i=1 1 2mi ‖−→pi‖2 . Thepartitionfunction is P(b)= ∫ M exp(−bH)dλω= ∫ D exp ( −b N ∑ i=1 1 2mi ‖−→p i‖2 ) N ∏ i=1 (d−→xid−→pi) , whereD is thedomainof the6N-dimensional spacespannedbythepositionvectors−→xi and linear momentumvectors−→pi of theparticles inwhich all the−→xi liewithin thevessel containing thegas. Aneasycalculation leads to P(b)=VN ( 2π b )3N/2 N ∏ i=1 (mi3/2)= N ∏ i=1 [ V ( 2πmi b )3/2] , whereV is thevolumeof thevesselwhichcontains thegas. Theprobabilitydensityof theGibbsstate associatedtob,withrespect to theLiouvillemeasure, therefore is ρb= N ∏ i=1 [ 1 V ( b 2πmi )3/2 exp (−b‖−→pi‖2 2mi )] . Weobserve thatρb is theproductof theprobabilitydensitiesρi,b for the i-thparticle ρi,b= 1 V ( b 2πmi )3/2 exp (−b‖−→pi‖2 2mi ) . The2N stochasticvectors−→xi and−→pi , i=1, . . . , Nare therefore independent. Theposition−→xi of the i-thparticle isuniformlydistributed in thevolumeof thevessel,while theprobabilitymeasureof its linearmomentum−→pi is theclassicalMaxwell–Boltzmannprobabilitydistributionof linearmomentum foran idealgasofparticlesofmassmi,ïŹrstobtainedbyMaxwell in1860.Moreoverwesee that the threecomponents pi1, pi2 and pi3 of the linearmomentum −→pi inanorhonormalbasisof thephysical spaceare independentstochasticvariables. Byusingtheformulaegiven inProposition11the internalenergyE(b)andtheentropyS(b)of thegascanbeeasilydeducedfromthepartitionfunctionP(b). Theirexpressionsare E(b)= 3N 2b , S(b)= 3 2 N ∑ i=1 logmi+ ( 3 2 ( 1+ log(2π) ) + logV ) N− 3N 2 logb . Wesee thateachof theNparticlespresent in thegashas thesamecontribution 3 2b to the internal energyE(b),whichdoesnotdependonthemassof theparticle. Evenmore: eachdegreeof freedom of eachparticle, i.e., eachof the the three components of the the linearmomentumof theparticle onthe threeaxesofanorthonormalbasis,has thesamecontribution 1 2b to the internalenergyE(b). This result isknowninphysicsunder thenameTheoremof equipartitionof the energyata thermodynamic equilibrium. It canbeeasilygeneralizedforpolyatomicgases, inwhichaparticlemaycarry, inaddition 30
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics