Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 30 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 30 - in Differential Geometrical Theory of Statistics

Bild der Seite - 30 -

Bild der Seite - 30 - in Differential Geometrical Theory of Statistics

Text der Seite - 30 -

Entropy2016,18, 370 Interactionsof theparticleswith thewallsof thevessel are essential for allowing themotions ofparticles to remainconïŹned. Interactionsbetweenparticlesareessential toallowtheexchanges between themofenergyandmomentum,whichplayan importantpart in theevolutionwith time of thestatistical stateof thesystem. However it appears thatwhile these termsarevery important todeterminethesystem’sevolutionwith time, theycanbeneglected,whenthegas isdiluteenough, ifweonlywanttodeterminetheïŹnalstatisticalstateof thesystem,onceathermodynamicequilibrium isestablished. TheHamiltonianusedwill thereforebe H= N ∑ i=1 1 2mi ‖−→pi‖2 . Thepartitionfunction is P(b)= ∫ M exp(−bH)dλω= ∫ D exp ( −b N ∑ i=1 1 2mi ‖−→p i‖2 ) N ∏ i=1 (d−→xid−→pi) , whereD is thedomainof the6N-dimensional spacespannedbythepositionvectors−→xi and linear momentumvectors−→pi of theparticles inwhich all the−→xi liewithin thevessel containing thegas. Aneasycalculation leads to P(b)=VN ( 2π b )3N/2 N ∏ i=1 (mi3/2)= N ∏ i=1 [ V ( 2πmi b )3/2] , whereV is thevolumeof thevesselwhichcontains thegas. Theprobabilitydensityof theGibbsstate associatedtob,withrespect to theLiouvillemeasure, therefore is ρb= N ∏ i=1 [ 1 V ( b 2πmi )3/2 exp (−b‖−→pi‖2 2mi )] . Weobserve thatρb is theproductof theprobabilitydensitiesρi,b for the i-thparticle ρi,b= 1 V ( b 2πmi )3/2 exp (−b‖−→pi‖2 2mi ) . The2N stochasticvectors−→xi and−→pi , i=1, . . . , Nare therefore independent. Theposition−→xi of the i-thparticle isuniformlydistributed in thevolumeof thevessel,while theprobabilitymeasureof its linearmomentum−→pi is theclassicalMaxwell–Boltzmannprobabilitydistributionof linearmomentum foran idealgasofparticlesofmassmi,ïŹrstobtainedbyMaxwell in1860.Moreoverwesee that the threecomponents pi1, pi2 and pi3 of the linearmomentum −→pi inanorhonormalbasisof thephysical spaceare independentstochasticvariables. Byusingtheformulaegiven inProposition11the internalenergyE(b)andtheentropyS(b)of thegascanbeeasilydeducedfromthepartitionfunctionP(b). Theirexpressionsare E(b)= 3N 2b , S(b)= 3 2 N ∑ i=1 logmi+ ( 3 2 ( 1+ log(2π) ) + logV ) N− 3N 2 logb . Wesee thateachof theNparticlespresent in thegashas thesamecontribution 3 2b to the internal energyE(b),whichdoesnotdependonthemassof theparticle. Evenmore: eachdegreeof freedom of eachparticle, i.e., eachof the the three components of the the linearmomentumof theparticle onthe threeaxesofanorthonormalbasis,has thesamecontribution 1 2b to the internalenergyE(b). This result isknowninphysicsunder thenameTheoremof equipartitionof the energyata thermodynamic equilibrium. It canbeeasilygeneralizedforpolyatomicgases, inwhichaparticlemaycarry, inaddition 30
zurĂŒck zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics