Seite - 30 - in Differential Geometrical Theory of Statistics
Bild der Seite - 30 -
Text der Seite - 30 -
Entropy2016,18, 370
Interactionsof theparticleswith thewallsof thevessel are essential for allowing themotions
ofparticles to remainconïŹned. Interactionsbetweenparticlesareessential toallowtheexchanges
between themofenergyandmomentum,whichplayan importantpart in theevolutionwith time
of thestatistical stateof thesystem. However it appears thatwhile these termsarevery important
todeterminethesystemâsevolutionwith time, theycanbeneglected,whenthegas isdiluteenough,
ifweonlywanttodeterminetheïŹnalstatisticalstateof thesystem,onceathermodynamicequilibrium
isestablished. TheHamiltonianusedwill thereforebe
H= N
â
i=1 1
2mi âââpiâ2 .
Thepartitionfunction is
P(b)= â«
M exp(âbH)dλÏ= â«
D exp (
âb N
â
i=1 1
2mi âââp iâ2 )
N
â
i=1 (dââxidââpi) ,
whereD is thedomainof the6N-dimensional spacespannedbythepositionvectorsââxi and linear
momentumvectorsââpi of theparticles inwhich all theââxi liewithin thevessel containing thegas.
Aneasycalculation leads to
P(b)=VN (
2Ï
b )3N/2 N
â
i=1 (mi3/2)= N
â
i=1 [
V (
2Ïmi
b )3/2]
,
whereV is thevolumeof thevesselwhichcontains thegas. Theprobabilitydensityof theGibbsstate
associatedtob,withrespect to theLiouvillemeasure, therefore is
Ïb= N
â
i=1 [
1
V (
b
2Ïmi )3/2
exp (âbâââpiâ2
2mi )]
.
Weobserve thatÏb is theproductof theprobabilitydensitiesÏi,b for the i-thparticle
Ïi,b= 1
V (
b
2Ïmi )3/2
exp (âbâââpiâ2
2mi )
.
The2N stochasticvectorsââxi andââpi , i=1, . . . , Nare therefore independent. Thepositionââxi of
the i-thparticle isuniformlydistributed in thevolumeof thevessel,while theprobabilitymeasureof
its linearmomentumââpi is theclassicalMaxwellâBoltzmannprobabilitydistributionof linearmomentum
foran idealgasofparticlesofmassmi,ïŹrstobtainedbyMaxwell in1860.Moreoverwesee that the
threecomponents pi1, pi2 and pi3 of the linearmomentum ââpi inanorhonormalbasisof thephysical
spaceare independentstochasticvariables.
Byusingtheformulaegiven inProposition11the internalenergyE(b)andtheentropyS(b)of
thegascanbeeasilydeducedfromthepartitionfunctionP(b). Theirexpressionsare
E(b)= 3N
2b , S(b)= 3
2 N
â
i=1 logmi+ (
3
2 (
1+ log(2Ï) )
+ logV )
Nâ 3N
2 logb .
Wesee thateachof theNparticlespresent in thegashas thesamecontribution 3
2b to the internal
energyE(b),whichdoesnotdependonthemassof theparticle. Evenmore: eachdegreeof freedom
of eachparticle, i.e., eachof the the three components of the the linearmomentumof theparticle
onthe threeaxesofanorthonormalbasis,has thesamecontribution 1
2b to the internalenergyE(b).
This result isknowninphysicsunder thenameTheoremof equipartitionof the energyata thermodynamic
equilibrium. It canbeeasilygeneralizedforpolyatomicgases, inwhichaparticlemaycarry, inaddition
30
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik