Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 32 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 32 - in Differential Geometrical Theory of Statistics

Image of the Page - 32 -

Image of the Page - 32 - in Differential Geometrical Theory of Statistics

Text of the Page - 32 -

Entropy2016,18, 370 Themotionof theparticlecanbemathematicallydescribedbymeansof theEuler–Lagrangeequations, with theLagrangian L=−mc2 √ 1− v 2 c2 . Thecomponentsof the linearmomentum−→p of theparticle, inanorthonormal frameat rest in the consideredGalileanreference frame,are pi= ∂L ∂vi = mvi√ 1− v 2 c2 , therefore −→p = m −→v√ 1− v 2 c2 . Denotingby p themodulusof−→p , theHamiltonianof theparticle is H=−→p ·−→v −L= mc 2√ 1− v 2 c2 = c √ p2+m2c2 . Letusconsiderarelativisticgas,madeofNpointparticles indexedby i∈{1,. . . ,N},mibeing therestmassof the i-thparticle.With thesameassumptionsas thosemade inSection6.3.1,wecan take forHamiltonianof thegas H= c N ∑ i=1 √ pi2+m2c2 . With the samenotationsas thoseof Section6.3.1, thepartition functionPof thegas takes the value, foreachb>0, P(b)= ∫ D exp ( −bc N ∑ i=1 √ (pi)2+m2c2 ) N ∏ i=1 (d−→xid−→pi) . This integralcanbeexpressedintermsof theBessel functionK2,whoseexpression is, foreach x>0, K2(x)= x ∫ +∞ 0 exp(−xchχ)sh2χchχdχ . Wehave P(b)= ( 4πVc b )N N ∏ i=1 ( mi2K2(mibc2) ) , ρb= 1 P(b) exp ( −bc N ∑ i=1 √ pi2+mi2c2 ) . This probability density of the Gibbs state shows that the 2N stochastic vectors−→xi and−→pi are independent, thateach−→xi isuniformlydistributed in thevessel containingthegasandthat the probabilitydensityofeach−→pi isexactlytheprobabilitydistributionofthelinearmomentumofparticles inarelativisticgascalledtheMaxwell–JĂŒttnerdistribution, obtainedbyFerenczJĂŒttner (1878–1958) in 1911,discussed in thebookbythe IrishmathematicianandphysicistSynge[54]. Ofcourse, the formulaegiven inProposition11allowthecalculationof the internalenergyE(b), theentropyS(b)andthepressureΠ(b)of therelativisticgas. 6.3.4. Relativistic IDealGasofMasslessParticles We have seen in the previous Chapter that in an inertial reference frame, the Hamiltonian of a relativistic point particle of rest mass m is c √ p2+m2c2, where p is the modulus of the linear momentum vector−→p of the particle in the considered reference frame. This expression 32
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics