Seite - 32 - in Differential Geometrical Theory of Statistics
Bild der Seite - 32 -
Text der Seite - 32 -
Entropy2016,18, 370
Themotionof theparticlecanbemathematicallydescribedbymeansof theEulerâLagrangeequations,
with theLagrangian
L=âmc2 â
1â v 2
c2 .
Thecomponentsof the linearmomentumââp of theparticle, inanorthonormal frameat rest in the
consideredGalileanreference frame,are
pi= âL
âvi = mviâ
1â v 2
c2 , therefore ââp = m
ââvâ
1â v 2
c2 .
Denotingby p themodulusofââp , theHamiltonianof theparticle is
H=ââp ·ââv âL= mc
2â
1â v 2
c2 = c â
p2+m2c2 .
Letusconsiderarelativisticgas,madeofNpointparticles indexedby iâ{1,. . . ,N},mibeing
therestmassof the i-thparticle.With thesameassumptionsas thosemade inSection6.3.1,wecan
take forHamiltonianof thegas
H= c N
â
i=1 â
pi2+m2c2 .
With the samenotationsas thoseof Section6.3.1, thepartition functionPof thegas takes the
value, foreachb>0,
P(b)= â«
D exp (
âbc N
â
i=1 â
(pi)2+m2c2 )
N
â
i=1 (dââxidââpi) .
This integralcanbeexpressedintermsof theBessel functionK2,whoseexpression is, foreach
x>0,
K2(x)= x â« +â
0 exp(âxchÏ)sh2ÏchÏdÏ .
Wehave
P(b)= (
4ÏVc
b )N N
â
i=1 ( mi2K2(mibc2) )
,
Ïb= 1
P(b) exp (
âbc N
â
i=1 â
pi2+mi2c2 )
.
This probability density of the Gibbs state shows that the 2N stochastic vectorsââxi andââpi
are independent, thateachââxi isuniformlydistributed in thevessel containingthegasandthat the
probabilitydensityofeachââpi isexactlytheprobabilitydistributionofthelinearmomentumofparticles
inarelativisticgascalledtheMaxwellâJĂŒttnerdistribution, obtainedbyFerenczJĂŒttner (1878â1958) in
1911,discussed in thebookbythe IrishmathematicianandphysicistSynge[54].
Ofcourse, the formulaegiven inProposition11allowthecalculationof the internalenergyE(b),
theentropyS(b)andthepressureÎ (b)of therelativisticgas.
6.3.4. Relativistic IDealGasofMasslessParticles
We have seen in the previous Chapter that in an inertial reference frame, the Hamiltonian
of a relativistic point particle of rest mass m is c â
p2+m2c2, where p is the modulus of the
linear momentum vectorââp of the particle in the considered reference frame. This expression
32
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik