Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 32 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 32 - in Differential Geometrical Theory of Statistics

Bild der Seite - 32 -

Bild der Seite - 32 - in Differential Geometrical Theory of Statistics

Text der Seite - 32 -

Entropy2016,18, 370 Themotionof theparticlecanbemathematicallydescribedbymeansof theEuler–Lagrangeequations, with theLagrangian L=−mc2 √ 1− v 2 c2 . Thecomponentsof the linearmomentum−→p of theparticle, inanorthonormal frameat rest in the consideredGalileanreference frame,are pi= ∂L ∂vi = mvi√ 1− v 2 c2 , therefore −→p = m −→v√ 1− v 2 c2 . Denotingby p themodulusof−→p , theHamiltonianof theparticle is H=−→p ·−→v −L= mc 2√ 1− v 2 c2 = c √ p2+m2c2 . Letusconsiderarelativisticgas,madeofNpointparticles indexedby i∈{1,. . . ,N},mibeing therestmassof the i-thparticle.With thesameassumptionsas thosemade inSection6.3.1,wecan take forHamiltonianof thegas H= c N ∑ i=1 √ pi2+m2c2 . With the samenotationsas thoseof Section6.3.1, thepartition functionPof thegas takes the value, foreachb>0, P(b)= ∫ D exp ( −bc N ∑ i=1 √ (pi)2+m2c2 ) N ∏ i=1 (d−→xid−→pi) . This integralcanbeexpressedintermsof theBessel functionK2,whoseexpression is, foreach x>0, K2(x)= x ∫ +∞ 0 exp(−xchχ)sh2χchχdχ . Wehave P(b)= ( 4πVc b )N N ∏ i=1 ( mi2K2(mibc2) ) , ρb= 1 P(b) exp ( −bc N ∑ i=1 √ pi2+mi2c2 ) . This probability density of the Gibbs state shows that the 2N stochastic vectors−→xi and−→pi are independent, thateach−→xi isuniformlydistributed in thevessel containingthegasandthat the probabilitydensityofeach−→pi isexactlytheprobabilitydistributionofthelinearmomentumofparticles inarelativisticgascalledtheMaxwell–JĂŒttnerdistribution, obtainedbyFerenczJĂŒttner (1878–1958) in 1911,discussed in thebookbythe IrishmathematicianandphysicistSynge[54]. Ofcourse, the formulaegiven inProposition11allowthecalculationof the internalenergyE(b), theentropyS(b)andthepressureΠ(b)of therelativisticgas. 6.3.4. Relativistic IDealGasofMasslessParticles We have seen in the previous Chapter that in an inertial reference frame, the Hamiltonian of a relativistic point particle of rest mass m is c √ p2+m2c2, where p is the modulus of the linear momentum vector−→p of the particle in the considered reference frame. This expression 32
zurĂŒck zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics