Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 34 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 34 - in Differential Geometrical Theory of Statistics

Image of the Page - 34 -

Image of the Page - 34 - in Differential Geometrical Theory of Statistics

Text of the Page - 34 -

Entropy2016,18, 370 P(b)= +∞ ∑ N=0 1 N! ( 16πV c3b3 )N = exp ( 16πV c3b3 ) . ThenumberNofphotons in thevesselat thermodynamicequilibriumisastochastic function whichtakes thevaluenwiththeprobability Probability ( [N=n] ) = 1 n! ( 16πV c3b3 )n exp ( −16πV c3b3 ) . Theexpressionof thepartitionfunctionPallowsthecalculationof theinternalenergy, theentropy and all other thermodynamic functions of the system. However, the formula so obtained for the distributionofphotonsofvarious energies at agiven temperaturedoesnot agreewith the law, in verygoodagreementwithexperiments,obtainedbyMaxPlanck(1858–1947) in1900.Anassembly ofphotons in thermodynamicequilibriumevidentlycannotbedescribedasaclassicalHamiltonian system.This factplayedanimportantpart for thedevelopmentofquantummechanics. 6.3.5. SpecificHeatofSolids Themotionofaone-dimensionalharmonicoscillatorcanbedescribedbyaHamiltoniansystem with,asHamiltonian, H(p,q)= p2 2m + μq2 2 . The idea that theheatenergyofasolidcomes fromthesmallvibrations,atamicroscopicscale,of its constitutiveatoms, leadphysicists toattempt tomathematicallydescribeasolidasanassemblyofa largenumberNof three-dimensionalharmonicoscillators. Bydealingseparatelywitheachproper oscillationmode, thesolidcanevenbedescribedasanassemblyof3None-dimensionalharmonic oscillators. Exangesofenergybetweentheseoscillators isallowedbytheexistenceofsmall couplings betweenthem.However, for thedeterminationof the thermodynamicequilibriaof thesolidwewill, as in theprevioussection for idealgases, considerasnegligible theenergyof interactionsbetweenthe oscillators.Wetherefore take forHamiltonianof thesolid H= 3N ∑ i=1 ( pi2 2mi + μiqi2 2 ) . Thevalueof theparititionfunctionP, foranyb>0, is P(b)= ∫ R6N exp [ −b 3N ∑ i=1 ( pi2 2mi + μiqi2 2 )] 3N ∏ i=1 (dpidqi)= 3N ∏ i=1 ( 1 νi ) b−3N , where νi= 1 2π √ μi mi is the frequencyof the i-thharmonicoscillator. The internalenergyof thesolid is E(b)=−dlogP(b) db = 3N b . Weobserve that itonlydependsonthe the temperatureandonthenumberofatomsin thesolid, notonthe frequenciesνiof theharmonicoscillators.Withb= 1 kT this result is inagreementwith the empirical lawfor thespecificheatof solids, ingoodagreementwithexperimentsathightemperature, discovered in1819bytheFrenchscientistsPierreLouisDulong(1785–1838)andAlexisThérèsePetit (1791–1820). 34
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics