Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 34 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 34 - in Differential Geometrical Theory of Statistics

Bild der Seite - 34 -

Bild der Seite - 34 - in Differential Geometrical Theory of Statistics

Text der Seite - 34 -

Entropy2016,18, 370 P(b)= +∞ ∑ N=0 1 N! ( 16πV c3b3 )N = exp ( 16πV c3b3 ) . ThenumberNofphotons in thevesselat thermodynamicequilibriumisastochastic function whichtakes thevaluenwiththeprobability Probability ( [N=n] ) = 1 n! ( 16πV c3b3 )n exp ( −16πV c3b3 ) . Theexpressionof thepartitionfunctionPallowsthecalculationof theinternalenergy, theentropy and all other thermodynamic functions of the system. However, the formula so obtained for the distributionofphotonsofvarious energies at agiven temperaturedoesnot agreewith the law, in verygoodagreementwithexperiments,obtainedbyMaxPlanck(1858–1947) in1900.Anassembly ofphotons in thermodynamicequilibriumevidentlycannotbedescribedasaclassicalHamiltonian system.This factplayedanimportantpart for thedevelopmentofquantummechanics. 6.3.5. SpecificHeatofSolids Themotionofaone-dimensionalharmonicoscillatorcanbedescribedbyaHamiltoniansystem with,asHamiltonian, H(p,q)= p2 2m + μq2 2 . The idea that theheatenergyofasolidcomes fromthesmallvibrations,atamicroscopicscale,of its constitutiveatoms, leadphysicists toattempt tomathematicallydescribeasolidasanassemblyofa largenumberNof three-dimensionalharmonicoscillators. Bydealingseparatelywitheachproper oscillationmode, thesolidcanevenbedescribedasanassemblyof3None-dimensionalharmonic oscillators. Exangesofenergybetweentheseoscillators isallowedbytheexistenceofsmall couplings betweenthem.However, for thedeterminationof the thermodynamicequilibriaof thesolidwewill, as in theprevioussection for idealgases, considerasnegligible theenergyof interactionsbetweenthe oscillators.Wetherefore take forHamiltonianof thesolid H= 3N ∑ i=1 ( pi2 2mi + μiqi2 2 ) . Thevalueof theparititionfunctionP, foranyb>0, is P(b)= ∫ R6N exp [ −b 3N ∑ i=1 ( pi2 2mi + μiqi2 2 )] 3N ∏ i=1 (dpidqi)= 3N ∏ i=1 ( 1 νi ) b−3N , where νi= 1 2π √ μi mi is the frequencyof the i-thharmonicoscillator. The internalenergyof thesolid is E(b)=−dlogP(b) db = 3N b . Weobserve that itonlydependsonthe the temperatureandonthenumberofatomsin thesolid, notonthe frequenciesνiof theharmonicoscillators.Withb= 1 kT this result is inagreementwith the empirical lawfor thespecificheatof solids, ingoodagreementwithexperimentsathightemperature, discovered in1819bytheFrenchscientistsPierreLouisDulong(1785–1838)andAlexisThérèsePetit (1791–1820). 34
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics