Seite - 34 - in Differential Geometrical Theory of Statistics
Bild der Seite - 34 -
Text der Seite - 34 -
Entropy2016,18, 370
P(b)= +∞
∑
N=0 1
N! (
16πV
c3b3 )N
= exp (
16πV
c3b3 )
.
ThenumberNofphotons in thevesselat thermodynamicequilibriumisastochastic function
whichtakes thevaluenwiththeprobability
Probability (
[N=n] )
= 1
n! (
16πV
c3b3 )n
exp (
−16πV
c3b3 )
.
Theexpressionof thepartitionfunctionPallowsthecalculationof theinternalenergy, theentropy
and all other thermodynamic functions of the system. However, the formula so obtained for the
distributionofphotonsofvarious energies at agiven temperaturedoesnot agreewith the law, in
verygoodagreementwithexperiments,obtainedbyMaxPlanck(1858–1947) in1900.Anassembly
ofphotons in thermodynamicequilibriumevidentlycannotbedescribedasaclassicalHamiltonian
system.This factplayedanimportantpart for thedevelopmentofquantummechanics.
6.3.5. SpecificHeatofSolids
Themotionofaone-dimensionalharmonicoscillatorcanbedescribedbyaHamiltoniansystem
with,asHamiltonian,
H(p,q)= p2
2m + μq2
2 .
The idea that theheatenergyofasolidcomes fromthesmallvibrations,atamicroscopicscale,of
its constitutiveatoms, leadphysicists toattempt tomathematicallydescribeasolidasanassemblyofa
largenumberNof three-dimensionalharmonicoscillators. Bydealingseparatelywitheachproper
oscillationmode, thesolidcanevenbedescribedasanassemblyof3None-dimensionalharmonic
oscillators. Exangesofenergybetweentheseoscillators isallowedbytheexistenceofsmall couplings
betweenthem.However, for thedeterminationof the thermodynamicequilibriaof thesolidwewill,
as in theprevioussection for idealgases, considerasnegligible theenergyof interactionsbetweenthe
oscillators.Wetherefore take forHamiltonianof thesolid
H= 3N
∑
i=1 ( pi2
2mi + μiqi2
2 )
.
Thevalueof theparititionfunctionP, foranyb>0, is
P(b)= ∫
R6N exp [
−b 3N
∑
i=1 ( pi2
2mi + μiqi2
2 )] 3N
∏
i=1 (dpidqi)= 3N
∏
i=1 (
1
νi )
b−3N ,
where
νi= 1
2π √
μi
mi
is the frequencyof the i-thharmonicoscillator.
The internalenergyof thesolid is
E(b)=−dlogP(b)
db = 3N
b .
Weobserve that itonlydependsonthe the temperatureandonthenumberofatomsin thesolid,
notonthe frequenciesνiof theharmonicoscillators.Withb= 1
kT this result is inagreementwith the
empirical lawfor thespecificheatof solids, ingoodagreementwithexperimentsathightemperature,
discovered in1819bytheFrenchscientistsPierreLouisDulong(1785–1838)andAlexisThérèsePetit
(1791–1820).
34
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik