Page - 35 - in Differential Geometrical Theory of Statistics
Image of the Page - 35 -
Text of the Page - 35 -
Entropy2016,18, 370
7.GeneralizationforHamiltonianActions
7.1.GeneralizedGibbsStates
Inhisbook[15]andinseveralpapers [13,16,17],Souriauextends theconceptofaGibbsstate for
aHamiltonianactionofaLiegroupGonasymplecticmanifold (M,Ļ).UsualGibbsstatesdeļ¬ned
inSection6 for a smoothHamiltonianHonasymplecticmanifold (M,Ļ)appearas special cases,
inwhich the Lie group is a one-parameter group. If the symplecticmanifold (M,Ļ) is the phase
spaceof theHamiltonian system, that one-parameter group,whoseparameter is the time t, is the
groupof evolution, as a functionof time, of the stateof the system, starting fromits state at some
arbitrarilychosen initial time t0. If (M,Ļ) is thesymplecticmanifoldofall themotionsof thesystem,
thatone-parametergroup,whoseparameter isarealĻāR, is the transformationgroupwhichmaps
onemotionof thesystemwithsomeinitial stateat time t0 onto themotionof thesystemwiththesame
initial stateatanother time (t0+Ļ).Wediscussbelowthisgeneralization.
NotationsandConventions
In this section,Φ :GĆMāM isaHamiltonianaction (forexampleonthe left)ofaLiegroupG
onasymplecticmanifold (M,Ļ).WedenotebyG theLiealgebraofG, byGā itsdual spaceandby
J :MāGā amomentummapof theactionΦ.
Deļ¬nition19. Let bāG be such that the integrals on the righthandsidesof the equalities
P(b)= ā«
M exp (āćJ,bć)dĪ»Ļ and
EJ(b)=EĻb(J)= 1
P(b) ā«
M Jexp (āćJ,bć)dĪ»Ļ
converge. The smoothprobabilitymeasureonMwithdensity (with respect to theLiouvillemeasureĪ»Ļ onM)
Ļb= 1
P(b) exp (āćJ,bć)
is called the generalizedGibbs statistical state associated to b. The functions b ā P(b) and b ā EJ(b) so
deļ¬nedonthesubsetofGmadebyelementsb forwhichthe integralsdeļ¬ningP(b)andEJ(b)convergearecalled
thepartition functionassociated to themomentummap J and themeanvalueof J atgeneralizedGibbs states.
ThefollowingPropositiongeneralizes9.
Proposition12. Let bāG be such that the integralsdeļ¬ningP(b)andEJ(b) inDeļ¬nition19converge, and
Ļb be thedensityof thegeneralizedGibbs stateassociated tob. Theentropys(Ļb),whichwill bedenotedbyS(b),
exists and isgivenby
S(b)= log (
P(b) )
+ ā©
EJ(b),b āŖ
= log (
P(b) )āā©D(logP(b)),bāŖ . (7)
Moreover, for anyother smoothprobabilitydensityĻ1 such that
EĻ1(J)=EĻb(J)=EJ(b) ,
wehave
s(Ļ1)⤠s(Ļb) ,
and the equality s(Ļ1)= s(Ļb)holds if andonly ifĻ1= Ļb.
35
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- FrƩdƩric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik