Seite - 35 - in Differential Geometrical Theory of Statistics
Bild der Seite - 35 -
Text der Seite - 35 -
Entropy2016,18, 370
7.GeneralizationforHamiltonianActions
7.1.GeneralizedGibbsStates
Inhisbook[15]andinseveralpapers [13,16,17],Souriauextends theconceptofaGibbsstate for
aHamiltonianactionofaLiegroupGonasymplecticmanifold (M,ω).UsualGibbsstatesdefined
inSection6 for a smoothHamiltonianHonasymplecticmanifold (M,ω)appearas special cases,
inwhich the Lie group is a one-parameter group. If the symplecticmanifold (M,ω) is the phase
spaceof theHamiltonian system, that one-parameter group,whoseparameter is the time t, is the
groupof evolution, as a functionof time, of the stateof the system, starting fromits state at some
arbitrarilychosen initial time t0. If (M,ω) is thesymplecticmanifoldofall themotionsof thesystem,
thatone-parametergroup,whoseparameter isarealτ∈R, is the transformationgroupwhichmaps
onemotionof thesystemwithsomeinitial stateat time t0 onto themotionof thesystemwiththesame
initial stateatanother time (t0+τ).Wediscussbelowthisgeneralization.
NotationsandConventions
In this section,Φ :G×M→M isaHamiltonianaction (forexampleonthe left)ofaLiegroupG
onasymplecticmanifold (M,ω).WedenotebyG theLiealgebraofG, byG∗ itsdual spaceandby
J :M→G∗ amomentummapof theactionΦ.
Definition19. Let b∈G be such that the integrals on the righthandsidesof the equalities
P(b)= ∫
M exp (−〈J,b〉)dλω and
EJ(b)=Eρb(J)= 1
P(b) ∫
M Jexp (−〈J,b〉)dλω
converge. The smoothprobabilitymeasureonMwithdensity (with respect to theLiouvillemeasureλω onM)
ρb= 1
P(b) exp (−〈J,b〉)
is called the generalizedGibbs statistical state associated to b. The functions b → P(b) and b → EJ(b) so
definedonthesubsetofGmadebyelementsb forwhichthe integralsdefiningP(b)andEJ(b)convergearecalled
thepartition functionassociated to themomentummap J and themeanvalueof J atgeneralizedGibbs states.
ThefollowingPropositiongeneralizes9.
Proposition12. Let b∈G be such that the integralsdefiningP(b)andEJ(b) inDefinition19converge, and
ρb be thedensityof thegeneralizedGibbs stateassociated tob. Theentropys(ρb),whichwill bedenotedbyS(b),
exists and isgivenby
S(b)= log (
P(b) )
+ 〈
EJ(b),b 〉
= log (
P(b) )−〈D(logP(b)),b〉 . (7)
Moreover, for anyother smoothprobabilitydensityρ1 such that
Eρ1(J)=Eρb(J)=EJ(b) ,
wehave
s(ρ1)≤ s(ρb) ,
and the equality s(ρ1)= s(ρb)holds if andonly ifρ1= ρb.
35
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik