Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 35 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 35 - in Differential Geometrical Theory of Statistics

Bild der Seite - 35 -

Bild der Seite - 35 - in Differential Geometrical Theory of Statistics

Text der Seite - 35 -

Entropy2016,18, 370 7.GeneralizationforHamiltonianActions 7.1.GeneralizedGibbsStates Inhisbook[15]andinseveralpapers [13,16,17],Souriauextends theconceptofaGibbsstate for aHamiltonianactionofaLiegroupGonasymplecticmanifold (M,ω).UsualGibbsstatesdefined inSection6 for a smoothHamiltonianHonasymplecticmanifold (M,ω)appearas special cases, inwhich the Lie group is a one-parameter group. If the symplecticmanifold (M,ω) is the phase spaceof theHamiltonian system, that one-parameter group,whoseparameter is the time t, is the groupof evolution, as a functionof time, of the stateof the system, starting fromits state at some arbitrarilychosen initial time t0. If (M,ω) is thesymplecticmanifoldofall themotionsof thesystem, thatone-parametergroup,whoseparameter isarealτ∈R, is the transformationgroupwhichmaps onemotionof thesystemwithsomeinitial stateat time t0 onto themotionof thesystemwiththesame initial stateatanother time (t0+τ).Wediscussbelowthisgeneralization. NotationsandConventions In this section,Φ :G×M→M isaHamiltonianaction (forexampleonthe left)ofaLiegroupG onasymplecticmanifold (M,ω).WedenotebyG theLiealgebraofG, byG∗ itsdual spaceandby J :M→G∗ amomentummapof theactionΦ. Definition19. Let b∈G be such that the integrals on the righthandsidesof the equalities P(b)= ∫ M exp (−〈J,b〉)dλω and EJ(b)=Eρb(J)= 1 P(b) ∫ M Jexp (−〈J,b〉)dλω converge. The smoothprobabilitymeasureonMwithdensity (with respect to theLiouvillemeasureλω onM) ρb= 1 P(b) exp (−〈J,b〉) is called the generalizedGibbs statistical state associated to b. The functions b → P(b) and b → EJ(b) so definedonthesubsetofGmadebyelementsb forwhichthe integralsdefiningP(b)andEJ(b)convergearecalled thepartition functionassociated to themomentummap J and themeanvalueof J atgeneralizedGibbs states. ThefollowingPropositiongeneralizes9. Proposition12. Let b∈G be such that the integralsdefiningP(b)andEJ(b) inDefinition19converge, and ρb be thedensityof thegeneralizedGibbs stateassociated tob. Theentropys(ρb),whichwill bedenotedbyS(b), exists and isgivenby S(b)= log ( P(b) ) + 〈 EJ(b),b 〉 = log ( P(b) )−〈D(logP(b)),b〉 . (7) Moreover, for anyother smoothprobabilitydensityρ1 such that Eρ1(J)=Eρb(J)=EJ(b) , wehave s(ρ1)≤ s(ρb) , and the equality s(ρ1)= s(ρb)holds if andonly ifρ1= ρb. 35
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics