Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 37 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 37 - in Differential Geometrical Theory of Statistics

Image of the Page - 37 -

Image of the Page - 37 - in Differential Geometrical Theory of Statistics

Text of the Page - 37 -

Entropy2016,18, 370 Foreachb∈Ω, thedifferential at b of themapEJ (which is a linearmapdeïŹnedonG,withvalues in its dualG∗) isgivenby 〈 DEJ(b)(Y),Z âŒȘ = 〈 EJ(b),Y âŒȘ〈 EJ(b),Z âŒȘ−Eρb(〈J,Y〉〈J,Z〉) , withYandZ∈G , wherewehavewritten, as inDeïŹnition17, Eρb (〈J,Y〉〈J,Z〉)= 1 P(b) ∫ M 〈J,Y〉〈J,Z〉exp(−〈J,b〉)dλω . Ateachb∈Ω, thedifferential of the entropy functionSProposition12,which is a linearmapdeïŹnedon G,withvalues inR, inotherwordsanelementofG∗, is givenby 〈 DS(b),Y âŒȘ = 〈 DEJ(b)(Y),b âŒȘ , Y∈G . Proof. ByassumptionsSection7.2, thedifferentialsofPandEJ canbecalculatedbydifferentiation under thesign ∫ M. Easy (but tedious)calculations leadto the indicatedresults. Corollary3. With the sameassumptionsandnotationsas those inProposition14, for anyb∈ΩandY∈G, 〈 DEJ(b)(Y),Y âŒȘ =− 1 P(b) ∫ M 〈 J−EJ(b),Y âŒȘ2dλω≀0. Proof. Thisresult followsfromthewellknownresult inProbabilitytheoryalreadyusedintheproofof Proposition11. Themomentummap Jof theHamiltonianactionΊ isnotuniquelydetermined: foranyconstant ÎŒ ∈ G∗, J1 = J+ÎŒ too is amomentummap forΊ. The followingproposition indicates how the generalizedthermodynamic functionsP,EJ andSchangewhen J is replacedby J1. Proposition15. Withthesameassumptionsandnotationsas those inProposition14, letΌ∈G∗ beaconstant. Whenthemomentummap J is replacedby J1= J+ÎŒ, theopensubsetΩofG remainsunchanged,while the generalized thermodynamic functionsP,EJ andS, are replaced, respectively, byP1, EJ1 andS1, givenby P1(b)= exp (âˆ’ă€ˆÎŒ,b〉)P(b), EJ1(b)=EJ(b)+ÎŒ , S1(b)=S(b) . TheGibbs satistical state and itsdensityρbwith respect to theLiouvillemeasureλω remainunchanged. Proof. Wehave exp (−〈J+ÎŒ,b〉)= exp(âˆ’ă€ˆÎŒ,b〉)exp(−〈J,b〉) . The indicatedresults followbyeasycalculations. Thefollowingproposition indicateshowthegeneralizedthermodynamic functionsP,EJ andS varyalongorbitsof theadjointactionof theLiegroupGonitsLiealgebraG. Proposition16. Theassumptionsandnotationsare the sameas those inProposition14. TheopensubsetΩ ofG is anunion of orbits of the adjoint action ofG onG. In otherwords, for each b∈Ω and each g∈G, Adgb∈Ω.Moreover, let Ξ :G→G∗ be the symplectic cocycle ofG for the coadjoinactionofGonG∗ such that, for anyg∈G, J◩Ωg=Ad∗g−1◩ J+Ξ(g) . 37
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics