Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 37 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 37 - in Differential Geometrical Theory of Statistics

Bild der Seite - 37 -

Bild der Seite - 37 - in Differential Geometrical Theory of Statistics

Text der Seite - 37 -

Entropy2016,18, 370 Foreachb∈Ω, thedifferential at b of themapEJ (which is a linearmapdeïŹnedonG,withvalues in its dualG∗) isgivenby 〈 DEJ(b)(Y),Z âŒȘ = 〈 EJ(b),Y âŒȘ〈 EJ(b),Z âŒȘ−Eρb(〈J,Y〉〈J,Z〉) , withYandZ∈G , wherewehavewritten, as inDeïŹnition17, Eρb (〈J,Y〉〈J,Z〉)= 1 P(b) ∫ M 〈J,Y〉〈J,Z〉exp(−〈J,b〉)dλω . Ateachb∈Ω, thedifferential of the entropy functionSProposition12,which is a linearmapdeïŹnedon G,withvalues inR, inotherwordsanelementofG∗, is givenby 〈 DS(b),Y âŒȘ = 〈 DEJ(b)(Y),b âŒȘ , Y∈G . Proof. ByassumptionsSection7.2, thedifferentialsofPandEJ canbecalculatedbydifferentiation under thesign ∫ M. Easy (but tedious)calculations leadto the indicatedresults. Corollary3. With the sameassumptionsandnotationsas those inProposition14, for anyb∈ΩandY∈G, 〈 DEJ(b)(Y),Y âŒȘ =− 1 P(b) ∫ M 〈 J−EJ(b),Y âŒȘ2dλω≀0. Proof. Thisresult followsfromthewellknownresult inProbabilitytheoryalreadyusedintheproofof Proposition11. Themomentummap Jof theHamiltonianactionΊ isnotuniquelydetermined: foranyconstant ÎŒ ∈ G∗, J1 = J+ÎŒ too is amomentummap forΊ. The followingproposition indicates how the generalizedthermodynamic functionsP,EJ andSchangewhen J is replacedby J1. Proposition15. Withthesameassumptionsandnotationsas those inProposition14, letΌ∈G∗ beaconstant. Whenthemomentummap J is replacedby J1= J+ÎŒ, theopensubsetΩofG remainsunchanged,while the generalized thermodynamic functionsP,EJ andS, are replaced, respectively, byP1, EJ1 andS1, givenby P1(b)= exp (âˆ’ă€ˆÎŒ,b〉)P(b), EJ1(b)=EJ(b)+ÎŒ , S1(b)=S(b) . TheGibbs satistical state and itsdensityρbwith respect to theLiouvillemeasureλω remainunchanged. Proof. Wehave exp (−〈J+ÎŒ,b〉)= exp(âˆ’ă€ˆÎŒ,b〉)exp(−〈J,b〉) . The indicatedresults followbyeasycalculations. Thefollowingproposition indicateshowthegeneralizedthermodynamic functionsP,EJ andS varyalongorbitsof theadjointactionof theLiegroupGonitsLiealgebraG. Proposition16. Theassumptionsandnotationsare the sameas those inProposition14. TheopensubsetΩ ofG is anunion of orbits of the adjoint action ofG onG. In otherwords, for each b∈Ω and each g∈G, Adgb∈Ω.Moreover, let Ξ :G→G∗ be the symplectic cocycle ofG for the coadjoinactionofGonG∗ such that, for anyg∈G, J◩Ωg=Ad∗g−1◩ J+Ξ(g) . 37
zurĂŒck zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics