Seite - 37 - in Differential Geometrical Theory of Statistics
Bild der Seite - 37 -
Text der Seite - 37 -
Entropy2016,18, 370
ForeachbâΩ, thedifferential at b of themapEJ (which is a linearmapdeïŹnedonG,withvalues in its
dualGâ) isgivenby
â©
DEJ(b)(Y),Z âȘ
= â©
EJ(b),Y âȘâ©
EJ(b),Z âȘâEÏb(ăJ,YăăJ,Ză) , withYandZâG ,
wherewehavewritten, as inDeïŹnition17,
EÏb (ăJ,YăăJ,Ză)= 1
P(b) â«
M ăJ,YăăJ,Zăexp(âăJ,bă)dÎ»Ï .
AteachbâΩ, thedifferential of the entropy functionSProposition12,which is a linearmapdeïŹnedon
G,withvalues inR, inotherwordsanelementofGâ, is givenby
â©
DS(b),Y âȘ
= â©
DEJ(b)(Y),b âȘ
, YâG .
Proof. ByassumptionsSection7.2, thedifferentialsofPandEJ canbecalculatedbydifferentiation
under thesign â«
M. Easy (but tedious)calculations leadto the indicatedresults.
Corollary3. With the sameassumptionsandnotationsas those inProposition14, for anybâΩandYâG,
â©
DEJ(b)(Y),Y âȘ =â 1
P(b) â«
M â© JâEJ(b),Y âȘ2dλÏâ€0.
Proof. Thisresult followsfromthewellknownresult inProbabilitytheoryalreadyusedintheproofof
Proposition11.
Themomentummap Jof theHamiltonianactionΊ isnotuniquelydetermined: foranyconstant
ÎŒ â Gâ, J1 = J+ÎŒ too is amomentummap forΊ. The followingproposition indicates how the
generalizedthermodynamic functionsP,EJ andSchangewhen J is replacedby J1.
Proposition15. Withthesameassumptionsandnotationsas those inProposition14, letÎŒâGâ beaconstant.
Whenthemomentummap J is replacedby J1= J+Ό, theopensubsetΩofG remainsunchanged,while the
generalized thermodynamic functionsP,EJ andS, are replaced, respectively, byP1, EJ1 andS1, givenby
P1(b)= exp (âăÎŒ,bă)P(b), EJ1(b)=EJ(b)+ÎŒ , S1(b)=S(b) .
TheGibbs satistical state and itsdensityÏbwith respect to theLiouvillemeasureÎ»Ï remainunchanged.
Proof. Wehave
exp (âăJ+ÎŒ,bă)= exp(âăÎŒ,bă)exp(âăJ,bă) .
The indicatedresults followbyeasycalculations.
Thefollowingproposition indicateshowthegeneralizedthermodynamic functionsP,EJ andS
varyalongorbitsof theadjointactionof theLiegroupGonitsLiealgebraG.
Proposition16. Theassumptionsandnotationsare the sameas those inProposition14. TheopensubsetΩ
ofG is anunion of orbits of the adjoint action ofG onG. In otherwords, for each bâΩ and each gâG,
AdgbâΩ.Moreover, let Ξ :GâGâ be the symplectic cocycle ofG for the coadjoinactionofGonGâ such
that, for anygâG,
JâŠÎŠg=Adâgâ1⊠J+Ξ(g) .
37
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik