Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 38 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 38 - in Differential Geometrical Theory of Statistics

Image of the Page - 38 -

Image of the Page - 38 - in Differential Geometrical Theory of Statistics

Text of the Page - 38 -

Entropy2016,18, 370 Then for eachb∈Ωandeachg∈G P(Adgb)= exp (〈 Ξ(g−1),b âŒȘ) P(b)= exp ( −〈Ad∗gΞ(g),bâŒȘ)P(b) , EJ(Adgb)=Ad∗g−1 EJ(b)+Ξ(g) , S(Adgb)=S(b) . Proof. Wehave P(Adgb)= ∫ M exp (−〈J,Adgb〉)dλω= ∫ M exp (−〈Ad∗g J,b〉)dλω = ∫ M exp ( −〈J◩Ωg−1−ξ(g−1,bâŒȘ)dλω = exp (〈 Ξ(g−1),b âŒȘ) P(b)= exp ( −〈Ad∗gΞ(g),bâŒȘ)P(b) , sinceΞ(g−1)=−Ad∗gΞ(g). ByusingPropositions14and12, theotherresultseasily follow. Remark16. Theequality EJ(Adgb)=Ad∗g−1 EJ(b)+Ξ(g) means that themapEJ :Ω→G∗ is equivariantwith respect to theadjoint actionofGontheopensubsetΩof itsLie algebraG and its afïŹneactiononthe left onG∗ (g,Ο) →Ad∗g−1 Ο+Ξ(g) , g∈G , Ο∈G∗ . Proposition17. Theassumptionsandnotationsare the sameas those inProposition14. For eachb∈Ωand eachX∈G,wehave 〈 EJ(b), [X,b] âŒȘ = 〈 Θ(X),b âŒȘ , DEJ(b) ( [X,b] ) =−ad∗XEJ(b)+Θ(X) , whereΘ=TeΞ :G→G∗ is the1-cocycle of theLie algebraG associated to the1-cocycleΞ of theLiegroupG. Proof. Letussetg= exp(τX) in theïŹrstequality inProposition16,derive thatequalitywithrespect toτ, andevaluate theresultatτ=0.Weobtain DP(b) ( [X,b] ) =−P(b)〈Θ(X),bâŒȘ . Since,bytheïŹrstequalityofProposition14,DP(b)=−P(b)EJ(b), theïŹrststatedequalityfollows. Letusnowsetg= exp(τX) in thesecondequality inProposition16,derive thatequalitywith respect toτ, andevaluate theresultatτ=0.Weobtain thesecondequalitystated. Corollary4. With theassumptionsandnotationsofProposition17, letusdeïŹne, for eachb∈Ω, a linearmap Θb :G→G∗ bysetting Θb(X)=Θ(X)−ad∗XEJ(b) . ThemapΘb is a symplectic1-cocycle of theLie algebraG for the coadjoint representation,whichsatisïŹes Θb(b)=0. Moreover ifwe replace themomentummap J by J1 = J+ÎŒ, withΌ∈ G∗ constant, the1-cocycleΘb remainsunchanged. 38
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics