Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 38 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 38 - in Differential Geometrical Theory of Statistics

Bild der Seite - 38 -

Bild der Seite - 38 - in Differential Geometrical Theory of Statistics

Text der Seite - 38 -

Entropy2016,18, 370 Then for eachb∈Ωandeachg∈G P(Adgb)= exp (〈 Ξ(g−1),b âŒȘ) P(b)= exp ( −〈Ad∗gΞ(g),bâŒȘ)P(b) , EJ(Adgb)=Ad∗g−1 EJ(b)+Ξ(g) , S(Adgb)=S(b) . Proof. Wehave P(Adgb)= ∫ M exp (−〈J,Adgb〉)dλω= ∫ M exp (−〈Ad∗g J,b〉)dλω = ∫ M exp ( −〈J◩Ωg−1−ξ(g−1,bâŒȘ)dλω = exp (〈 Ξ(g−1),b âŒȘ) P(b)= exp ( −〈Ad∗gΞ(g),bâŒȘ)P(b) , sinceΞ(g−1)=−Ad∗gΞ(g). ByusingPropositions14and12, theotherresultseasily follow. Remark16. Theequality EJ(Adgb)=Ad∗g−1 EJ(b)+Ξ(g) means that themapEJ :Ω→G∗ is equivariantwith respect to theadjoint actionofGontheopensubsetΩof itsLie algebraG and its afïŹneactiononthe left onG∗ (g,Ο) →Ad∗g−1 Ο+Ξ(g) , g∈G , Ο∈G∗ . Proposition17. Theassumptionsandnotationsare the sameas those inProposition14. For eachb∈Ωand eachX∈G,wehave 〈 EJ(b), [X,b] âŒȘ = 〈 Θ(X),b âŒȘ , DEJ(b) ( [X,b] ) =−ad∗XEJ(b)+Θ(X) , whereΘ=TeΞ :G→G∗ is the1-cocycle of theLie algebraG associated to the1-cocycleΞ of theLiegroupG. Proof. Letussetg= exp(τX) in theïŹrstequality inProposition16,derive thatequalitywithrespect toτ, andevaluate theresultatτ=0.Weobtain DP(b) ( [X,b] ) =−P(b)〈Θ(X),bâŒȘ . Since,bytheïŹrstequalityofProposition14,DP(b)=−P(b)EJ(b), theïŹrststatedequalityfollows. Letusnowsetg= exp(τX) in thesecondequality inProposition16,derive thatequalitywith respect toτ, andevaluate theresultatτ=0.Weobtain thesecondequalitystated. Corollary4. With theassumptionsandnotationsofProposition17, letusdeïŹne, for eachb∈Ω, a linearmap Θb :G→G∗ bysetting Θb(X)=Θ(X)−ad∗XEJ(b) . ThemapΘb is a symplectic1-cocycle of theLie algebraG for the coadjoint representation,whichsatisïŹes Θb(b)=0. Moreover ifwe replace themomentummap J by J1 = J+ÎŒ, withΌ∈ G∗ constant, the1-cocycleΘb remainsunchanged. 38
zurĂŒck zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics