Seite - 38 - in Differential Geometrical Theory of Statistics
Bild der Seite - 38 -
Text der Seite - 38 -
Entropy2016,18, 370
Then for eachbâΩandeachgâG
P(Adgb)= exp (⩠Ξ(gâ1),b âȘ)
P(b)= exp ( ââ©AdâgΞ(g),bâȘ)P(b) ,
EJ(Adgb)=Adâgâ1 EJ(b)+Ξ(g) ,
S(Adgb)=S(b) .
Proof. Wehave
P(Adgb)= â«
M exp (âăJ,Adgbă)dλÏ= â«
M exp (âăAdâg J,bă)dλÏ
= â«
M exp ( ââ©JâŠÎŠgâ1âΞ(gâ1,bâȘ)dλÏ
= exp (⩠Ξ(gâ1),b âȘ)
P(b)= exp ( ââ©AdâgΞ(g),bâȘ)P(b) ,
sinceΞ(gâ1)=âAdâgΞ(g). ByusingPropositions14and12, theotherresultseasily follow.
Remark16. Theequality
EJ(Adgb)=Adâgâ1 EJ(b)+Ξ(g)
means that themapEJ :ΩâGâ is equivariantwith respect to theadjoint actionofGontheopensubsetΩof
itsLie algebraG and its afïŹneactiononthe left onGâ
(g,Ο) âAdâgâ1 Ο+Ξ(g) , gâG , ΟâGâ .
Proposition17. Theassumptionsandnotationsare the sameas those inProposition14. For eachbâΩand
eachXâG,wehave â©
EJ(b), [X,b] âȘ
= â©
Î(X),b âȘ
,
DEJ(b) (
[X,b] ) =âadâXEJ(b)+Î(X) ,
whereÎ=TeΞ :GâGâ is the1-cocycle of theLie algebraG associated to the1-cocycleΞ of theLiegroupG.
Proof. Letussetg= exp(ÏX) in theïŹrstequality inProposition16,derive thatequalitywithrespect
toÏ, andevaluate theresultatÏ=0.Weobtain
DP(b) (
[X,b] ) =âP(b)â©Î(X),bâȘ .
Since,bytheïŹrstequalityofProposition14,DP(b)=âP(b)EJ(b), theïŹrststatedequalityfollows.
Letusnowsetg= exp(ÏX) in thesecondequality inProposition16,derive thatequalitywith
respect toÏ, andevaluate theresultatÏ=0.Weobtain thesecondequalitystated.
Corollary4. With theassumptionsandnotationsofProposition17, letusdeïŹne, for eachbâΩ, a linearmap
Îb :GâGâ bysetting
Îb(X)=Î(X)âadâXEJ(b) .
ThemapÎb is a symplectic1-cocycle of theLie algebraG for the coadjoint representation,whichsatisïŹes
Îb(b)=0.
Moreover ifwe replace themomentummap J by J1 = J+ÎŒ, withÎŒâ Gâ constant, the1-cocycleÎb
remainsunchanged.
38
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik