Page - 39 - in Differential Geometrical Theory of Statistics
Image of the Page - 39 -
Text of the Page - 39 -
Entropy2016,18, 370
Proof. ForX,Y andZ inG,wehave sinceΘ is a 1-cocycle, ∑
circ(X,Y,Z) meaninga sumover circular
permutationsofX,YandZ,usingthe Jacobi identity inG,wehave
∑
circ(X,Y,Z) 〈
Θb(X), [Y,Z] 〉
= ∑
circ(X,Y,Z) 〈−ad∗XEJ(b), [Y,Z]〉
= ∑
circ(X,Y,Z) 〈−EJ(b),[X, [Y,Z]]〉
=0.
The linearmapΘb is thereforea1cocycle, evenasymplectic1-cocyclesince
forallXandY∈G,〈
Θb(X),Y 〉 =−〈Θb(Y),X〉.
Usingthefirstequalitystated
inProposition17,wehaveforanyX∈G〈
Θb(b),X 〉
= 〈 Θ(b)−ad∗b EJ(b),X 〉 =−〈Θ(X),b〉+〈EJ(b), [X,b]〉=0.
Ifwereplace Jby J1= J+μ, themapX →Θ(X) is replacedbyX →Θ1(X)=Θ(X)+ad∗Xμ
andEJ(b)byEJ1(b)=EJ(b)+μ, thereforeΘb remainsunchanged.
The following lemmawill allowus todefine, foreach b∈Ω, a remarkable symmetricbilinear
formonthevectorsubspace [b,G]={[b,X] ;X∈G}of theLiealgebraG.
Lemma1. LetΞbea1-cocycle of afinite-dimensionalLie algebraG for the coadjoint representation. For each
b∈ kerΞ, let Fb = [G,b] be the set of elementsX∈Gwhich canbewrittenX= [X1,b] for someX1∈G.
ThenFb is avector subspaceofG, and thevalueof the righthandsideof the equality
Γb(X,Y)= 〈
Ξ(X1),Y 〉
, withX1∈G , X=[X1,b]∈Fb , Y∈Fb ,
dependsonlyonXandY,notonthechoiceofX1∈G such thatX=[X1,b]. That equalitydefinesabilinear
formΓb onFbwhich is symmetric, i.e., satisfies
Γb(X,Y)=Γb(Y,X) for allXandY∈Fb .
Proof. LetX1 andX′1 ∈ G be such that [X1,b] = [X′1,b] =X. LetY1 ∈ G be such that [Y1,b] =Y.
Wehave 〈 Ξ(X1−X′1),Y 〉
= 〈 Ξ(X1−X′1), [Y1,b] 〉
=−〈Ξ(Y1), [b,X1−X′1]〉−〈Ξ(b), [X1−X′1,Y1]〉
=0
sinceΞ(b)=0and [b,X1−X′1]=0.Wehaveshownthat 〈
Ξ(X1),Y 〉
= 〈 Ξ(X′1),Y 〉
. ThereforeΓb isa
bilinear formonFb.
Similarly〈
Ξ(X1),Y 〉
= 〈
Ξ(X1), [Y1,b] 〉 =−〈Ξ(Y1), [b,X1]〉−〈Ξ(b), [X1,Y1]〉= 〈Ξ(Y1),X〉 ,
whichproves thatΓb is symmetric.
Theorem7. Theassumptionsandnotationsarethesameasthose inProposition14. Foreachb∈Ω, thereexists
on the vector subspace Fb = [G,b] of elementsX∈Gwhich can bewrittenX= [X1,b] for someX1 ∈G,
a symmetricnegativebilinear formΓb givenby
Γb(X,Y)= 〈
Θb(X1),Y 〉
, withX1∈G , X=[X1,b]∈Fb , Y∈Fb ,
39
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik