Seite - 39 - in Differential Geometrical Theory of Statistics
Bild der Seite - 39 -
Text der Seite - 39 -
Entropy2016,18, 370
Proof. ForX,Y andZ inG,wehave sinceÎ is a 1-cocycle, â
circ(X,Y,Z) meaninga sumover circular
permutationsofX,YandZ,usingthe Jacobi identity inG,wehave
â
circ(X,Y,Z) â©
Îb(X), [Y,Z] âȘ
= â
circ(X,Y,Z) â©âadâXEJ(b), [Y,Z]âȘ
= â
circ(X,Y,Z) â©âEJ(b),[X, [Y,Z]]âȘ
=0.
The linearmapÎb is thereforea1cocycle, evenasymplectic1-cocyclesince
forallXandYâG,â©
Îb(X),Y âȘ =ââ©Îb(Y),XâȘ.
UsingtheïŹrstequalitystated
inProposition17,wehaveforanyXâGâ©
Îb(b),X âȘ
= â© Î(b)âadâb EJ(b),X âȘ =ââ©Î(X),bâȘ+â©EJ(b), [X,b]âȘ=0.
Ifwereplace Jby J1= J+ÎŒ, themapX âÎ(X) is replacedbyX âÎ1(X)=Î(X)+adâXÎŒ
andEJ(b)byEJ1(b)=EJ(b)+ÎŒ, thereforeÎb remainsunchanged.
The following lemmawill allowus todeïŹne, foreach bâΩ, a remarkable symmetricbilinear
formonthevectorsubspace [b,G]={[b,X] ;XâG}of theLiealgebraG.
Lemma1. LetÎbea1-cocycle of aïŹnite-dimensionalLie algebraG for the coadjoint representation. For each
bâ kerÎ, let Fb = [G,b] be the set of elementsXâGwhich canbewrittenX= [X1,b] for someX1âG.
ThenFb is avector subspaceofG, and thevalueof the righthandsideof the equality
Îb(X,Y)= â©
Î(X1),Y âȘ
, withX1âG , X=[X1,b]âFb , YâFb ,
dependsonlyonXandY,notonthechoiceofX1âG such thatX=[X1,b]. That equalitydeïŹnesabilinear
formÎb onFbwhich is symmetric, i.e., satisïŹes
Îb(X,Y)=Îb(Y,X) for allXandYâFb .
Proof. LetX1 andXâČ1 â G be such that [X1,b] = [XâČ1,b] =X. LetY1 â G be such that [Y1,b] =Y.
Wehave â© Î(X1âXâČ1),Y âȘ
= â© Î(X1âXâČ1), [Y1,b] âȘ
=ââ©Î(Y1), [b,X1âXâČ1]âȘââ©Î(b), [X1âXâČ1,Y1]âȘ
=0
sinceÎ(b)=0and [b,X1âXâČ1]=0.Wehaveshownthat â©
Î(X1),Y âȘ
= â© Î(XâČ1),Y âȘ
. ThereforeÎb isa
bilinear formonFb.
Similarlyâ©
Î(X1),Y âȘ
= â©
Î(X1), [Y1,b] âȘ =ââ©Î(Y1), [b,X1]âȘââ©Î(b), [X1,Y1]âȘ= â©Î(Y1),XâȘ ,
whichproves thatÎb is symmetric.
Theorem7. Theassumptionsandnotationsarethesameasthose inProposition14. ForeachbâΩ, thereexists
on the vector subspace Fb = [G,b] of elementsXâGwhich can bewrittenX= [X1,b] for someX1 âG,
a symmetricnegativebilinear formÎb givenby
Îb(X,Y)= â©
Îb(X1),Y âȘ
, withX1âG , X=[X1,b]âFb , YâFb ,
39
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik