Page - 40 - in Differential Geometrical Theory of Statistics
Image of the Page - 40 -
Text of the Page - 40 -
Entropy2016,18, 370
whereΘb :G→G∗ is the symplectic1-cocycledefined inCorollary4.
Proof. WehaveseeninCorollary4 thatb∈kerΘb. Thefact that theequalitygiven inthestatement
abovedefines indeedasymmetricbilinear formonFbdirectly followsfromLemma1.Weonlyhave
toprove that this symmetricbilinear formisnegative. LetX∈ Fb andX1∈G suchthatX=[X1,b].
UsingProposition17andCorollary3,wehave
Γb(X,X)= 〈
Θb(X1), [X1,b] 〉
= 〈 Θ(X1)−ad∗X1 EJ(b), [X1,b] 〉
= 〈
DEJ(b)[X1,b], [X1,b] 〉
≤0.
Thesymmetricbilinear formΓbonFb is thereforenegative.
Remark17. Thesymmetricnegativebilinear formsencountered inTheorem7andCorollary3seemtobe linked
with theFishermetric in informationgeometrydiscussed in [31,60,61].
7.3. ExamplesofGeneralizedGibbsStates
7.3.1.Actionof theGroupofRotationsonaSphere
The symplecticmanifold (M,ω) considered here is the two-dimensional sphere of radius R
centeredat theoriginOofa three-dimensionalorientedEuclideanvectorspace −→
E , equippedwith its
areaelementassymplectic form. ThegroupGof rotationsaroundtheorigin (isomorphic toSO(3))
acts on the sphere M by aHamiltonian action. TheLie algebraG ofG can be identifiedwith−→E ,
the fundamental vector field on M associated to an element −→
b inG ≡ −→E being the vector field
on Mwhose value at a pointm ∈ M is given by the vector product−→b ×−→Om. The dualG∗ ofG
willbe too identifiedwith −→
E , thecouplingbydualitybeinggivenbytheEuclideanscalarproduct.
Themomentummap J :M→G∗≡−→E isgivenby
J(m)=−R−→Om , m∈M .
Therefore, forany −→
b ∈G≡−→E ,〈
J(m), −→
b 〉 =−R−→Om ·−→b .
Let −→
b be any element in G ≡ −→E . To calculate the partition function P(−→b )we choose an
orthonormalbasis (−→ex ,−→ey ,−→ez)of−→E such that−→b = ‖−→b ‖−→ez ,with‖−→b ‖ ∈R+, andweuseangular
coordinates (ϕ,θ)onthesphereM. Thecoordinatesofapointm∈Mare
x=Rcosθcosϕ , y=Rcosθsinϕ , z=Rsinθ .
Wehave
P( −→
b )= ∫ 2π
0 (∫ π/2
−π/2 R2exp(R‖−→b ‖sinθdθ )
dϕ= 4πR
‖−→b ‖ sh ( R‖−→b ‖) .
The probability density (with respect to the natural area measure on the sphere M) of the
generalizedGibbsstateassociatedto −→
b is
ρb(m)= 1
P( −→
b ) exp( −→
Om ·−→b ) , m∈M .
40
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik