Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 40 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 40 - in Differential Geometrical Theory of Statistics

Image of the Page - 40 -

Image of the Page - 40 - in Differential Geometrical Theory of Statistics

Text of the Page - 40 -

Entropy2016,18, 370 whereΘb :G→G∗ is the symplectic1-cocycledefined inCorollary4. Proof. WehaveseeninCorollary4 thatb∈kerΘb. Thefact that theequalitygiven inthestatement abovedefines indeedasymmetricbilinear formonFbdirectly followsfromLemma1.Weonlyhave toprove that this symmetricbilinear formisnegative. LetX∈ Fb andX1∈G suchthatX=[X1,b]. UsingProposition17andCorollary3,wehave Γb(X,X)= 〈 Θb(X1), [X1,b] 〉 = 〈 Θ(X1)−ad∗X1 EJ(b), [X1,b] 〉 = 〈 DEJ(b)[X1,b], [X1,b] 〉 ≤0. Thesymmetricbilinear formΓbonFb is thereforenegative. Remark17. Thesymmetricnegativebilinear formsencountered inTheorem7andCorollary3seemtobe linked with theFishermetric in informationgeometrydiscussed in [31,60,61]. 7.3. ExamplesofGeneralizedGibbsStates 7.3.1.Actionof theGroupofRotationsonaSphere The symplecticmanifold (M,ω) considered here is the two-dimensional sphere of radius R centeredat theoriginOofa three-dimensionalorientedEuclideanvectorspace −→ E , equippedwith its areaelementassymplectic form. ThegroupGof rotationsaroundtheorigin (isomorphic toSO(3)) acts on the sphere M by aHamiltonian action. TheLie algebraG ofG can be identifiedwith−→E , the fundamental vector field on M associated to an element −→ b inG ≡ −→E being the vector field on Mwhose value at a pointm ∈ M is given by the vector product−→b ×−→Om. The dualG∗ ofG willbe too identifiedwith −→ E , thecouplingbydualitybeinggivenbytheEuclideanscalarproduct. Themomentummap J :M→G∗≡−→E isgivenby J(m)=−R−→Om , m∈M . Therefore, forany −→ b ∈G≡−→E ,〈 J(m), −→ b 〉 =−R−→Om ·−→b . Let −→ b be any element in G ≡ −→E . To calculate the partition function P(−→b )we choose an orthonormalbasis (−→ex ,−→ey ,−→ez)of−→E such that−→b = ‖−→b ‖−→ez ,with‖−→b ‖ ∈R+, andweuseangular coordinates (ϕ,θ)onthesphereM. Thecoordinatesofapointm∈Mare x=Rcosθcosϕ , y=Rcosθsinϕ , z=Rsinθ . Wehave P( −→ b )= ∫ 2π 0 (∫ π/2 −π/2 R2exp(R‖−→b ‖sinθdθ ) dϕ= 4πR ‖−→b ‖ sh ( R‖−→b ‖) . The probability density (with respect to the natural area measure on the sphere M) of the generalizedGibbsstateassociatedto −→ b is ρb(m)= 1 P( −→ b ) exp( −→ Om ·−→b ) , m∈M . 40
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics