Seite - 40 - in Differential Geometrical Theory of Statistics
Bild der Seite - 40 -
Text der Seite - 40 -
Entropy2016,18, 370
whereÎb :GâGâ is the symplectic1-cocycledeïŹned inCorollary4.
Proof. WehaveseeninCorollary4 thatbâkerÎb. Thefact that theequalitygiven inthestatement
abovedeïŹnes indeedasymmetricbilinear formonFbdirectly followsfromLemma1.Weonlyhave
toprove that this symmetricbilinear formisnegative. LetXâ Fb andX1âG suchthatX=[X1,b].
UsingProposition17andCorollary3,wehave
Îb(X,X)= â©
Îb(X1), [X1,b] âȘ
= â© Î(X1)âadâX1 EJ(b), [X1,b] âȘ
= â©
DEJ(b)[X1,b], [X1,b] âȘ
â€0.
Thesymmetricbilinear formÎbonFb is thereforenegative.
Remark17. Thesymmetricnegativebilinear formsencountered inTheorem7andCorollary3seemtobe linked
with theFishermetric in informationgeometrydiscussed in [31,60,61].
7.3. ExamplesofGeneralizedGibbsStates
7.3.1.Actionof theGroupofRotationsonaSphere
The symplecticmanifold (M,Ï) considered here is the two-dimensional sphere of radius R
centeredat theoriginOofa three-dimensionalorientedEuclideanvectorspace ââ
E , equippedwith its
areaelementassymplectic form. ThegroupGof rotationsaroundtheorigin (isomorphic toSO(3))
acts on the sphere M by aHamiltonian action. TheLie algebraG ofG can be identiïŹedwithââE ,
the fundamental vector ïŹeld on M associated to an element ââ
b inG ⥠ââE being the vector ïŹeld
on Mwhose value at a pointm â M is given by the vector productââb ĂââOm. The dualGâ ofG
willbe too identiïŹedwith ââ
E , thecouplingbydualitybeinggivenbytheEuclideanscalarproduct.
Themomentummap J :MâGââĄââE isgivenby
J(m)=âRââOm , mâM .
Therefore, forany ââ
b âGâĄââE ,â©
J(m), ââ
b âȘ =âRââOm ·ââb .
Let ââ
b be any element in G ⥠ââE . To calculate the partition function P(ââb )we choose an
orthonormalbasis (ââex ,ââey ,ââez)ofââE such thatââb = âââb âââez ,withâââb â âR+, andweuseangular
coordinates (Ï,Ξ)onthesphereM. ThecoordinatesofapointmâMare
x=RcosΞcosÏ , y=RcosΞsinÏ , z=RsinΞ .
Wehave
P( ââ
b )= â« 2Ï
0 (â« Ï/2
âÏ/2 R2exp(Râââb âsinΞdΞ )
dÏ= 4ÏR
âââb â sh ( Râââb â) .
The probability density (with respect to the natural area measure on the sphere M) of the
generalizedGibbsstateassociatedto ââ
b is
Ïb(m)= 1
P( ââ
b ) exp( ââ
Om ·ââb ) , mâM .
40
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik