Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 40 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 40 - in Differential Geometrical Theory of Statistics

Bild der Seite - 40 -

Bild der Seite - 40 - in Differential Geometrical Theory of Statistics

Text der Seite - 40 -

Entropy2016,18, 370 whereΘb :G→G∗ is the symplectic1-cocycledeïŹned inCorollary4. Proof. WehaveseeninCorollary4 thatb∈kerΘb. Thefact that theequalitygiven inthestatement abovedeïŹnes indeedasymmetricbilinear formonFbdirectly followsfromLemma1.Weonlyhave toprove that this symmetricbilinear formisnegative. LetX∈ Fb andX1∈G suchthatX=[X1,b]. UsingProposition17andCorollary3,wehave Γb(X,X)= 〈 Θb(X1), [X1,b] âŒȘ = 〈 Θ(X1)−ad∗X1 EJ(b), [X1,b] âŒȘ = 〈 DEJ(b)[X1,b], [X1,b] âŒȘ ≀0. Thesymmetricbilinear formΓbonFb is thereforenegative. Remark17. Thesymmetricnegativebilinear formsencountered inTheorem7andCorollary3seemtobe linked with theFishermetric in informationgeometrydiscussed in [31,60,61]. 7.3. ExamplesofGeneralizedGibbsStates 7.3.1.Actionof theGroupofRotationsonaSphere The symplecticmanifold (M,ω) considered here is the two-dimensional sphere of radius R centeredat theoriginOofa three-dimensionalorientedEuclideanvectorspace −→ E , equippedwith its areaelementassymplectic form. ThegroupGof rotationsaroundtheorigin (isomorphic toSO(3)) acts on the sphere M by aHamiltonian action. TheLie algebraG ofG can be identiïŹedwith−→E , the fundamental vector ïŹeld on M associated to an element −→ b inG ≡ −→E being the vector ïŹeld on Mwhose value at a pointm ∈ M is given by the vector product−→b ×−→Om. The dualG∗ ofG willbe too identiïŹedwith −→ E , thecouplingbydualitybeinggivenbytheEuclideanscalarproduct. Themomentummap J :M→G∗≡−→E isgivenby J(m)=−R−→Om , m∈M . Therefore, forany −→ b ∈G≡−→E ,〈 J(m), −→ b âŒȘ =−R−→Om ·−→b . Let −→ b be any element in G ≡ −→E . To calculate the partition function P(−→b )we choose an orthonormalbasis (−→ex ,−→ey ,−→ez)of−→E such that−→b = ‖−→b ‖−→ez ,with‖−→b ‖ ∈R+, andweuseangular coordinates (ϕ,Ξ)onthesphereM. Thecoordinatesofapointm∈Mare x=RcosΞcosϕ , y=RcosΞsinϕ , z=RsinΞ . Wehave P( −→ b )= ∫ 2π 0 (∫ π/2 −π/2 R2exp(R‖−→b ‖sinΞdΞ ) dϕ= 4πR ‖−→b ‖ sh ( R‖−→b ‖) . The probability density (with respect to the natural area measure on the sphere M) of the generalizedGibbsstateassociatedto −→ b is ρb(m)= 1 P( −→ b ) exp( −→ Om ·−→b ) , m∈M . 40
zurĂŒck zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics